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1. Introduction

According to AdS/CFT correspondence [1, 2], there exists a map between operators in

N = 4 SYM and states in string theory on AdS5 × S5. This map generically leads to

a stringy state on the bulk side, however there is a nice class of BPS operators whose

duals are well–described by the type IIB supergravity. Such states have been extensively

analyzed in perturbation theory, where one considers linear excitations around AdS5 ×S5.

Computing correlation functions for these perturbations, one finds a remarkable agreement

with field theory results (see [3] for the review). However as the conformal weight of

operator in field theory becomes large, one should not expect that the linearized solution

of supergravity gives a good approximation to the correct geometry, but one can still hope

that for a wide class of semiclassical solutions, the stringy corrections are suppressed, and

by solving nonlinear equations which follow from the lagrangian of SUGRA, one finds a

good description of the bulk state.
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A concrete realization of this idea was given in [4], where BPS geometries with SO(4)×
SO(4) symmetry were constructed, and they were shown to have small curvature ev-

erywhere. Moreover, the properties of these geometries were in a perfect agreement

with expectations coming from field theory, where the BPS states had an effective de-

scription in terms of free fermions [5, 6]. The states analyzed in [6] are parameter-

ized in terms of their R charge J and when it is small (J ¿ N), the dual objects

are perturbative gravitons1 When quantum number J becomes comparable with num-

ber of three-branes N , the dual description is given in terms of curved D3 branes which

are known as ”giant gravitons” [7], and the connection of these branes with field the-

ory was discussed in [8]. Finally, as J becomes much larger than N , the brane probe

approximation breaks down, but for certain semiclassical states the geometric descrip-

tion can be trusted (the curvature invariants always remain finite), and corresponding

metrics were constructed in [4]. It was shown that various charges computed on the

geometric side were in a perfect agreement with corresponding quantities for the Fermi

liquid. Moreover, a subsequent work [9, 10] showed that a semiclassical quantization

of the geometries led to emergence of free fermions on the gravity side, thus providing

a direct map between BPS states in field theory and the moduli space of the geome-

tries.

The goal of this paper is to develop a similar gravitational description for another

class of BPS states. In the field theory such states are described by Wilson lines which

break one-half of the supersymmetries. It is well-known that in AdS/CFT correspondence,

to construct a dual bulk description of a Wilson line one considers an open fundamental

string which ends on this line [11, 12]. This picture should be true for the supersym-

metric line as well, and this fact seems to imply that fundamental strings would always

be present on the bulk side. However it is well-known that in a geometry produced by

fundamental string, the dilaton and curvature invariants always diverge at the location of

the string, so one concludes that Wilson lines cannot correspond to regular supergravity

solutions in the bulk. Thus there seems to be a sharp contrast between these operators

and the BPS states studied in [6]: in the latter case the bulk description involved only D3

branes, and the resulting geometries were shown to be smooth [4]. In fact this difference

in behavior is only an illusion, and as we review below, the brane configurations dual to

Wilson lines should be viewed as D3 branes with fluxes rather than fundamental strings.

This picture makes it plausible that in the geometric description, the dilaton stays finite

and the metric remains regular, and our construction will show that this is indeed the

case. Such ”desingularization” is based on the effect discussed in [13], where it was shown

that a fundamental string ending on a D3 brane can be viewed as a curved D3 brane

which carries electric field (we illustrate it in figure 1). The relevance of this effect for the

physics of Wilson lines was first proposed in [11]. The argument of [13] was based on the

dynamics of DBI action and to our knowledge its implications for supergravity solutions

were never analyzed. In this paper we show that in a certain setup (when supersymmetry

1In fact, one has to consider an excitation of a coupled system which contains gravitons and five-form

flux and but we will call these excitations ”gravitons” to be short.
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is enhanced by going to the near horizon limit of D3 branes), the effect of [13] leads to

regularization of supergravity solution, in particular the dilaton is bounded in the entire

space.

In fact the supergravity analysis that we present here was partially performed in a

nice paper [14], which was an inspiration for the present work. However [14] gave only

several necessary conditions for the geometry to be supersymmetric, and here we solve all

supergravity equations. We show that all solutions with AdS5×S5 asymptotics are param-

eterized by one harmonic function, and if this function obeys certain Neumann boundary

conditions, the solution is guaranteed to be regular. Unfortunately to recover the metric,

one still needs to solve some differential equations, but we prove that once the harmonic

function is specified, this solution exists and it is unique. We also outline a perturbative

procedure for constructing the solution.

However, before we discuss supergravity equations it might be useful to recall the

description of BPS states in terms of the brane probes. This analysis is presented in section

2. In section 3 we summarize the gravity solution (while the relevant algebra is presented

in the appendices), and show that the geometry is regular. Section 4 demonstrates that

AdS5 ×S5 solution can be easily recovered from the general formalism, and in section 5 we

construct the perturbative series around this solution. The existence and uniqueness of this

series proves that any harmonic function with correct boundary conditions unambiguously

leads to the unique regular geometry. In section 6 we point out that once the complete

system of equations is derived, it can be used to describe different brane configurations.

In particular, in this paper we are interested in solutions with AdS2 × S2 × S4 factors,

but slight modifications of the system make it appropriate for describing geometries with

AdS4 × S2 × S2 factors. Such geometries are produced by backreaction of D5 branes with

AdS4 × S2 worldvolumes. It is curious that there exists another analytic continuation

which maps our system back to itself, but in a different coordinate frame, and we discuss

such continuation in section 6 as well. Finally in section 7 we discuss the topology of the

solutions and we show that they admit some 3- and 5-cycles, and by wrapping D3 or D5

branes of this cycles we recover the branes discussed in section 2.

2. Wilson lines and brane probes

In this section we will summarize some known facts about the Wilson loops and brane

configurations which are dual to them. Out goal is to construct the gravitational dual

of supersymmetric time-like Wilson loops in N = 4 SYM. In field theory such operators

are specified by a representation R of the gauge group, and are given by the following

expressions:

WR(C) = TrR P exp

(

i

∫

C

ds
(

Aµẋµ + φI ẏ
I
)

)

. (2.1)

Here the curve C is a straight line x0 = t, ym = nmt and nm is a unit vector in R6.

The choice of this vector breaks SO(6) R-symmetry down to SO(5) which rotates the

remaining five scalars. Before we introduced the Wilson loop, N = 4 SYM had SU(2, 2)
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(b)

D3

F1

(a)

Figure 1: Two different pictures for fundamental string ending on D3 brane: the naive configura-

tion (a) and the description in terms of spike introduced in [13] (b). We will argue that the latter

picture is responsible for existence of regular supergravity solution.

conformal symmetry, but the presence of the straight line breaks this symmetry down to

SU(1, 1) × SU(2) [15]. Thus we expect that in the presence of Wilson loop, field theory

has SO(6) × SU(1, 1) × SU(2) global symmetry, which implies that the gravity dual would

contain AdS2, S2 and S4 factors2.

This is very reminiscent of the situation with BPS chiral primaries discussed in [5, 6]:

in that case field theory was defined on R × S3 and to construct a chiral primary one had

to consider zero modes on the sphere. Moreover, a generic 1/2 BPS state broke the R

symmetry group down to SO(4) (which is analogous to the SO(6) → SO(5) breaking for

the Wilson lines), so on the bulk side the relevant symmetry was SO(4) × SO(4) × U(1).

The geometries for such BPS states were constructed in [4] (and the goal of this paper is to

develop a similar picture for the states dual to Wilson lines (2.1)), but before that a great

deal of information about the bulk states was extracted in the brane probe approximation.

For the BPS states with SO(4) × SO(4) symmetry the relevant branes were known as

”giant gravitons” [7] and they were wrapping cycles either on S5 (in that case the angular

momentum was bounded from above: J ≤ N) or on AdS5. As we will show in this paper,

there is a very close analogy between the geometries produced by giant gravitons and the

geometries which are dual to the Wilson lines (2.1), so it is very natural to start with

discussing the brane configurations which are dual to (2.1).

We begin with the metric written in AdS2 × S2 × S4 form:

ds2 = R2
(

cosh2 ρdH2
2 + dρ2 + sinh2 ρdΩ2

2 + dθ2 + sin2 θdΩ2
4

)

(2.2)

F5 = 4R4
(

cosh2 ρ sinh2 ρdρ ∧ dH2 ∧ dΩ2 + dual
)

(2.3)

R4 = 4πNg . (2.4)

According to the proposal of [11, 18], a dual description of the Wilson line is given by a D3

brane with worldvolume AdS2 ×S2, which is symmetric under SO(5) rotations and has an

2The consequences of AdS2 × S2 symmetry for the field theory were recently studied in [16, 14, 17].
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electric field along its worldvolume. In an analogy with giant gravitons, we assume that

ρ is fixed, this assumption is consistent with equations of motion. Then we look at the

action for D3 brane:

SD3 = −TR4

∫

d4σ

√

(cosh4 ρ − E2) sinh4 ρ + 4TR4

∫

d4σ

∫ ρ

0
dv cosh2 v sinh2 v . (2.5)

Here E is a value of an electric field on the worldvolume of the brane, to be consistent

with symmetries and to have a closed form Fmn, this electric field must be constant. To

simplify the expressions we defined a rescaled electric field E = 2πR−2F01. Extremizing

the action with respect to ρ, we find an equation

−(1 − 4E2 + 2cosh 2ρ + cosh 4ρ) sinh 2ρ

4
√

−E2 + cosh4 ρ
+ 4cosh2 ρ sinh2 ρ = 0 . (2.6)

This equation is always solved by ρ = 0, and now we want to find another solution. Then

the relevant equation becomes

4(cosh2 ρ cosh 2ρ − E2) = 4

√

−E2 + cosh4 ρ sinh 2ρ

and it can easily be solved:

E = cosh ρ . (2.7)

We see that the value of the electric field cannot be smaller that one, and if E = 1 we

are back to the solution ρ = 0. For E > 1 we find two solutions: (2.7) and ρ = 0, they

are counterparts of a giant graviton and a usual graviton in [7]. Just as in that case, one

can look at a potential for ρ and show that solution ρ = 0 is unstable, and the correct

expression is (2.7). It may be more convenient to parameterize a brane by an electric

displacement Π:

Π =
δS

δE
=

TE
√

cosh4 ρ − E2
sinh2 ρ = T sinh ρ (2.8)

which goes to zero as the brane shrinks to zero size. Moreover, the electric displacement

controls a coupling of the electric field F01 with a bulk Kalb-Ramond field B01 [19, 20, 22]:

to find this coupling in the linear order, one makes a substitution 2πF → 2πF −B in (2.5),

then after performing an integration over Ω2, one finds a coupling

δS =

∫

d4σ
δSD3

δ(2πFab)
B̂tx = Ω2T3R

2 sinh ρ

∫

dt dx Btx (2.9)

Thus we see that, as expected, the three brane with electric flux sources a charge for

fundamental string, and to extract the value of this charge, one has to solve equations

of motion for B with source (2.9), construct the relevant field strength H = dB, and

integrate its dual over an appropriate manifold at infinity. Since, by construction, our

string is uniformly smeared on S2, the manifold relevant for the present case turns our to

be S5. Notice that going from the NS-NS three form H to its dual and expressing the

later in terms of unit sphere S5, ones introduces an extra factor of R2, so the we find an
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expression for the number of fundamental strings:

Ω2T3R
4 sinh ρ =

nf

2π
: nf = 4N sinh ρ (2.10)

Since we are working in the units where α′ = 1, we have the following expressions for the

tension and the volume of the sphere:

T3 =
1

g(2π)3
, Ω2 = 4π, (2.11)

In AdS5 × S5 there exists another brane which preserves AdS2 × S2 × S4 symmetry: it

is a D5 brane with worldvolume AdS2 × S4. In the Poincare patch, the solution for such

probe brane was found in [20] and authors of [17] explored the relation of this brane to

Wilson lines (see also [21] for an interesting discussion of non-BPS case). Let us see how

such branes would look in global AdS. We again take an worldvolume field strength to

be proportional to the volume of AdS space: F = ER2

2π d2H2, then the DBI action for D5

branes becomes

SD5 = −T5R
6

∫

d6σ

√

(cosh4 ρ − E2) sin8 θ + 4T5R
6E

∫

d6σ

∫ θ

dφ sin4 φ (2.12)

To have six-dimensional branes which preserve S2 symmetry, one has to set ρ = 0, then

equation for θ leads to the relation

−4 sin3 θ
(

√

1 − E2 cos θ − E sin θ
)

= 0 (2.13)

Again, there is an unstable solution θ = 0, and the stable one

θ = arctan

√
1 − E2

E
,

Π

T5R6
= sin3 θ cos θ + 4

∫

d6σ

∫ θ

dφ sin4 φ =
3

2

[

θ − E
√

1 − E2
]

. (2.14)

As before, we can compute the number of fundamental strings generated by this solution.

To this end we first find the relevant coupling to the B field:

δS =

∫

d6σ
δS5

δ(2πFab)
B̂tx =

3

2
Ω4T5R

4
[

θ − E
√

1 − E2
]

∫

dt dx Btx . (2.15)

Notice that in this case the strings are smeared over the four-sphere, so one needs to dualize

H3 in six dimensional space (the surface of integration is S3), so no factors of R are coming

from the dualization. The number of strings is

nf = 2π
3

2
Ω4T5R

4
[

θ − E
√

1 − E2
]

=
N

π

[

θ − E
√

1 − E2
]

. (2.16)

Here we used the expressions for the volume of the sphere and for the tension of the brane:

Ω4 =
8π2

3
, T5 =

1

(2π)5g
. (2.17)
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We observe that for a fixed value of displacement Π, solutions of both (2.8) and (2.14)

exist, on the other hand, in terms of E there seems to be a nice complementarity: if E < 1

we only have the D5 solution, while for E > 1 only D3 solution is present. Of course, it

is Π, not E that is related to physical observables, so the situation is quite analogous to

the giant gravitons: for the same value of Π we have a ”giant” (D5 brane) and a ”dual

giant” (D3 brane). Notice that in the case of spherical branes, the angular momentum of

the giant was bounded (J ≤ N), while for dual giant it was not [7], and we have a similar

picture here: the value of nf in (2.14) is bounded by N/2.

The analogy between D5 brane and the giant graviton (and between D3 brane and

the dual giant) is also supported by the field theory consideration of [17]. First we recall

that in the field theory, the chiral primaries of [6] were constructed by taking various gauge

invariant combination of a single N ×N matrix Z. Such combinations can be classified in

terms of representations of permutations group SN [5], in particular the giants correspond

to antisymmetric representations and dual giants correspond to symmetric representations

of this group [23, 5]. Recently a similar story emerged for the Wilson lines (2.1): they

are characterized by representations of the gauge group, and it was shown in [17] that

the symmetric representations correspond to D3 branes with fluxes, while antisymmetric

representations correspond to D5 branes.

If we put many giant gravitons together, the brane probe approximation would break

down and the geometry would no longer be AdS5 × S5. A generic configuration of giants

would lead to a space with regions of large curvature, so one would need full string theory

to describe such a space. However, there exist semiclassical configurations of giants which

lead to regular geometries, and their metric would be well approximated by the solutions

of type IIB supergravity. For the giant gravitons such solutions were constructed in [4],

and now we want to study similar semiclassical geometries for the D3 and D5 branes which

were discussed in this section.

3. Summary of supergravity solution

In this section we will outline the procedure for constructing the supergravity solutions,

and the details of the computations are provided in the appendices. As we discussed in the

previous section, the solution is expected to have AdS2, S2 and S4 factors, so the metric

and five-form are given by

ds2 = e2AdH2
2 + e2BdΩ2

2 + e2CdΩ2
4 + hijdxidxj , i, j = {1, 2} (3.1)

F5 = df3 ∧ dΩ4 + ∗10(df3 ∧ dΩ4) .

In the brane probe approximation, one set of the Wilson loops was described in terms of D3

branes with spikes of fundamental strings, and such fundamental strings produced NS-NS

B field along AdS2 direction. Since we already have nonzero five-form, the equation

d ∗10 (eφF3) = gF5 ∧ H3 (3.2)

implies that there is also a nontrivial RR potential C
(2)
µν along the S2 directions. Three

form also sources the dilaton. In principle we could also have the RR form along AdS2 and

– 7 –
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NS-NS form along S2, but one can consistently set them to zero. To see this we notice that

equations of motion of type IIB supergravity (but not the SUSY variations) are invariant

under the change of sign of RR fields. Since we are looking for solutions with S4 and S2

factors, we also have a Z2 symmetry which simultaneously inverts the orientation of these

factors.3 Combination of these two symmetries leaves F5, C
(2)
S and BAdS invariant, but it

changes signs of C(0), C
(2)
AdS and BS. In the leading order, the fundamental string probe

sources only C
(2)
S and BAdS , so this discrete symmetry guarantees that we can consistently

set C(0), C
(2)
AdS and BS to zero. To summarize, in addition to (3.1), we should excite the

following fields:

H3 = df1 ∧ dH2, F3 = df2 ∧ dΩ2, eφ . (3.3)

Notice that we started with string probe and used the symmetry argument to project out

the unwanted components of three-forms, but we would have arrived to the same conclusion

it we started from the D5-brane picture.

We can now consider the supersymmetry variations of the ansatz (3.1), (3.3), and the

details of this analysis are presented in the appendix. Notice that in the initial steps we are

essentially repeating the arguments of [14], although we are using more standard notation.

In the end we find that geometry can be expressed in terms of three fields G,H, φ:

ds2 = e2AdH2
2 + e2BdΩ2

2 + e2CdΩ2
4 +

e−2φ

e2B + e2C
(dx2 + dy2) (3.4)

F5 = df3 ∧ dΩ4 + ∗10(df3 ∧ dΩ4), H3 = df1 ∧ dH2, F3 = df2 ∧ dΩ2 (3.5)

e2A = yeH−φ, e2B = yeG−φ, e2C = ye−G−φ, F =
√

e2A − e2B − e2C(3.6)

df1 = − 4e2A+φ/2

e2A − e2B

[

eAFdφ − eB+C ∗ dφ
]

, (3.7)

df2 =
4e2B−φ/2

e2A − e2B

[

eBFdφ − eA+C ∗ dφ
]

(3.8)

eBe−4C ∗ df3 = eAd

(

A − φ

2

)

+
1

4
Fe−φ/2−2Adf1 (3.9)

These fields satisfy two differential relations

d(H − G − 4φ) = − 2

y(e2B + e2C)
(e2Cdy + FeB+C−Adx) (3.10)

∗d arctan eG +
1

2
d log

eA − F

eA + F
− 1

2
e−φ/2−2Adf1 = 0 (3.11)

along with integrability conditions coming from (3.7)–(3.9).4 Later we will also need an

alternative form of equation (3.9), which can be obtained by combining it with other

equations in the system:

eAe−4C ∗ df3 = eBd

(

B +
φ

2

)

+
1

4
Feφ/2−2Adf2 . (3.12)

3Notice that if invert orientation of only one of the factors, then self-dual F5 doesn’t just flip sign, but

it changes in a more complicated way.
4Throughout this paper the star is used to denote a Hodge dual in a flat two dimensional space with

coordinates (x, y), and our convention is ∗dy = dx.
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Notice that any solution of this system would lead to a supersymmetric geometry,

in this sense we found the necessary and sufficient conditions for having a BPS solution.

Unfortunately, we were not able to solve this system of equations. However it is clear

that the entire problem can be reduced to one differential equation for one function: for

example, equation (3.10) allows us to express G and H in terms of derivatives of a function

ψ ≡ H−G−4φ. Then we also know φ as a function of ψ, and (3.11) gives a closed differential

equation for a single function ψ. Of course, this is a very inefficient way of solving the

system, but it demonstrates that we essentially have one scalar degree of freedom.

It is useful to introduce two more functions Ψ1 and Ψ2 by performing decomposition

−1

4
e−2A−φ/2df1 =

e−φ

e2A − e2B

[

eA+φFdφ − y ∗ dφ
]

≡ 1

2
(dΨ2 + ∗dΨ1) . (3.13)

Of course there is an ambiguity in defining Ψ1 and Ψ2: one can add an arbitrary harmonic

function to Ψ2 and subtract the dual of this function from Ψ1. We will use this ambiguity

to impose the boundary condition

Ψ1|y=0 = 0, Ψ1|x2+y2→∞ = 0 (3.14)

Let us rewrite equation (3.11) in terms of Ψ1,Ψ2:

∗d
[

arctan eG + Ψ1

]

+ d

[

1

2
log

eA − F

eA + F
+ Ψ2

]

= 0 (3.15)

this implies that there exists a harmonic function Φ such that

(∂2
x + ∂2

y)Φ = 0 : arctan eG + Ψ1 = ∂yΦ,
1

2
log

eA − F

eA + F
+ Ψ2 = ∂xΦ (3.16)

As we argued before, the solution should be completely determined by one function, and we

will specify the geometry by choosing Φ5. While we do not have explicit expressions for the

metric components in terms of Φ, we still can determine the correct boundary conditions

for this function, and in the next section we will outline the perturbative procedure for

constructing geometry for any Φ.

Having formulated the local differential equations, we will now discuss the relevant

boundary conditions. Since we are looking at solutions which are dual to BPS states

in field theory, we expect the geometries to be regular. We recall that another class

of BPS geometries was discussed in [4] where it was shown that locally the metric can

be expressed in terms of a single harmonic function. Then regularity led to particular

5While it is true that geometry is specified in terms of one function, the choice of Φ does not fix a

solution uniquely: this function turns out to be invariant under the constant shifts of the dilaton (while

keeping G, H,x, y fixed). To deal with this ambiguity we notice that if the dilaton is rescaled as eφ′

= geφ,

then equations (3.7)–(3.11) remain invariant provided that

x′ = gx. y′ = gy, f ′

1 = g1/2f1, f ′

2 = g−1/2f2, f ′

3 = f3

In this paper we fix the value of eφ at infinity to be one, then Φ indeed corresponds to a unique solution.

The string coupling constant can be recovered by making the rescaling written above.

– 9 –
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Figure 2: A pictorial representation of the boundary conditions (3.17) on y = 0 line: the dark

region corresponds to shrinking S2 and the light regions correspond to contracting S4. Since we

are looking for solutions with AdS5 × S5 asymptotics, the dark segments are contained in a finite

region of the line.

boundary conditions for this function. In the present case, we already saw that the solution

can also be specified in terms of one harmonic function, and now we will show that regularity

imposes very simple boundary conditions for Φ.

The geometry (3.4) has two spheres and the product of their radii is equal to ye−φ,

while the ratio of the radii is eG. So if one of the spheres goes to zero size, then G approaches

either positive or negative infinity, while y goes to zero. Since the ambiguity in Ψ1 was

fixed by (3.14), equation (3.16) leads to two kinds of boundary conditions:

∂yΦ|y=0 =
π

2
: S4 shrinks

∂yΦ|y=0 = 0 : S2 shrinks (3.17)

Thus the line y = 0 is divided into the set of regions where normal derivative of Φ has a

certain value. This is analogous to the picture of [4] where there was a harmonic function

with two kinds of Dirichlet boundary conditions in the plane. Pictorially the line y = 0

is shown in figure 2, where dark regions correspond to shrinking S2 and light regions

correspond to shrinking S4. Let us assume that the dark regions are given by x2m−1 <

x < x2m, then we can find the complete solution of the Laplace equation:

Φ =
πy

2
− 1

4

∑

∫ x2m

x2m−1

dξ log[(x − ξ)2 + y2]

=
πy

2
+

1

4

∑

[

−2(x − ξ) + 2y arctan
x − ξ

y
+ (x − ξ) log[(x − ξ)2 + y2]

]x2m

x2m−1

∂yΦ =
π

2
+

1

2

∑

(

arctan
x − x2m

y
− arctan

x − x2m−1

y

)

(3.18)

∂xΦ =
1

4

∑

log
(x − x2m)2 + y2

(x − x2m−1)2 + y2
.

Notice that we can add an arbitrary function of x to Φ, and we fixed this freedom by

requiring that the derivative ∂xΦ goes to zero as y goes to infinity. Here we also assumed

that the dark segments are concentrated in a finite region of y = 0 line. This is required for

the solution to be asymptotically AdS5 × S5, and in this paper we will only be interested

in such solutions.

Let us now show that any harmonic function Φ which has boundary conditions (3.17)

in the various regions of y = 0 line, leads to a regular geometry. It is clear that once we

stay away from y = 0 and infinity of (x, y) plane, all coefficients in the metric remain finite,

so the geometry is regular. So we only need to analyze the behavior of the metric near

y = 0 and at infinity. As we will see in the next section, the metric based on harmonic

function (3.18) approaches AdS5 × S5 at infinity, so the space is clearly regular there. We

will now analyze the points on the y = 0 line.
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We begin with vicinity of the points in the dark region (i.e. we look near (x, y) = (x0, 0),

where x2m−1 < x0 < x2m). Then we can expand Φ and equations (3.16), (3.10) become

eG + Ψ1 = yq1(x),
1

2
log

eA − F

eA + F
+ Ψ2 = q2(x)

d(H − G − 4φ) = −2dy

y
− 2Fe−A

ye−G
dx (3.19)

The first equation shows that generically eG ∼ y, Ψ1 ∼ y, then integrability of the last

equation implies that in the leading order6

Fe−A = q̃3(x)ye−G = q3(x) (3.20)

Substituting this into the second equation in (3.16), we find that in the leading order,

Ψ2 = Ψ2(x). Using all this information, we can write the leading contribution to the

equation for the dilaton:

−1

4
e−2A−φ/2df1 = q3(x)dφ − e−H ∗ dφ = dΨ2 + ∗dΨ1 ≡ dp1(x) + O(y) (3.21)

This leads us to the important conclusion that neither dilaton nor f1 diverges as we ap-

proach y = 0. This behavior should be contrasted with gravitational solution for funda-

mental string which has a divergent dilaton. So the gravity solution confirms the picture

which we discussed in the previous section: rather than having the ”naked” sources of fun-

damentals strings, the geometry is described by regular D3 branes and the string charge is

mimicked by the fluxes on the brane.

Looking at the equation for f2, we wind that

df2 ∼ −4e2B−φ/2−A+C ∗ dφ ∼ y ∗ dφ (3.22)

Thus the potential f2 scales like the volume of S2 which is necessary for having a regular

solution. Finally we analyze the metric. Since dilaton remains finite, we can find the

leading expressions for the warp factors:

e2B = a1(x)y, e2C = a2(x), e2A = a3(x) (3.23)

In other words, the radii of S4 and AdS2 remain finite and the metric in (S2, x, y) sector

remains regular:

e−φyeGdΩ2
2 +

e−φ

y(eG + e−G)
(dx2 + dy2) ∼ e−φq(x)

[

dy2 + y2dΩ2
2 + dx2

]

(3.24)

The vicinity of the points where ∂yΦ = −π
2 can be analyzed in the analogous fashion.

The counterparts of the equations (3.19) are

−e−G + Ψ1 = yq1(x),
1

2
log

eA − F

eA + F
+ Ψ2 = q2(x)

d(H − G − 4φ) = −2e−2Gdy

y
− 2Fe−A

yeG
dx . (3.25)

6To arrive at this conclusion one should also recall that eH ≥ eG + e−G ∼ y−1
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With trivial modification of the arguments presented above, we find e−G ∼ y, while the

dilaton, fluxes and the AdS warp factor remain finite. To show the regularity of the metric

we then only need to analyze the (S4, x, y) sector of the geometry, and these coordinates

combine to give a locally flat six dimensional space similar to (3.24). Finally, at the points

where both spheres shrink to zero size, the geometry is also regular, and the simplest way

to see this is to ”zoom in” on such point by rescaling coordinates. Doing this one concludes

that (S2, S4, x, y) combine to form a patch of flat eight-dimensional space, which proves

the regularity of the geometry.

To summarize, we proved that the problem of finding BPS supergravity solution is

reduced to solving equations (3.7)–(3.11). We also demonstrated that the solutions can be

specified in terms of one function, and the most convenient way to parameterize the solution

is to introduce a harmonic function Φ by (3.16). To describe physical situation (e.g. to avoid

imaginary values of eG) this function should satisfy a simple Neumann boundary conditions

(3.17) on a line y = 0. We showed that any harmonic function which obeys these conditions

leads to a regular geometry, in particular, dilaton always remains finite. Unfortunately, in

order to translate information from the harmonic function to the geometry one still needs to

solve differential equations. In the section 5 we will present an algorithm which allows one

to start from any function Φ and construct gravity solution as a perturbative expansion

in the value of dilaton. Since dilaton goes to zero at infinity (asymptotically the space

is AdS5 × S5) and never diverges, we expect that such perturbation theory should give

convergent series rather than asymptotic expansion. We present a perturbative procedure

for two reasons. First, it is interesting to look at the leading order correction to AdS space.

But more importantly, our argument that the solution in completely determined in terms of

Φ was somewhat formal, and perturbative expansion proves this statement by construction.

But before we construct the perturbative series, it is useful to recover AdS5 × S5 space

itself.

4. Example: AdS5 × S
5

Once we found the equations which describe all BPS geometries, it is interesting to see how

AdS5×S5 fits into the general story. As we mentioned in the previous section, the solution

should be completely specified in terms of one function, and since AdS5×S5 has vanishing

dilaton7, we expect that this would be the only solution possessing such property. It is

instructive to show that this is indeed the case. First we observe that there is an alternative

form of equations (3.10), (3.11) (see appendix A for details):

1

2
d

[

e2A − e2B
]

− 1

2
(e2A + e2B)dφ +

1

2
FeAe−φ/2−2Adf1 + F 2dφ = 0 (4.1)

eB+C ∗ d

(

C − φ

2

)

− 1

4
e2Be−φ/2−2Adf1 − FeAd

(

A − φ

2

)

− 1

4
F 2e−φ/2−2Adf1 = 0 . (4.2)

7See footnote 5 for the discussion of constant dilaton
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If dilaton is equal to zero, then according to (3.7), f1 vanishes as well, and equation (4.1)

implies that

e2A − e2B = L2, e2C = L2 − F 2 < L2 (4.3)

with constant L. These equations guarantee that we can parameterize warp factors in

terms of two scalar functions, which we call ρ and θ:

e2A = L2 cosh2 ρ, e2B = L2 sinh2 ρ, e2C = L2 sin2 θ (4.4)

At this point we know that y = L2 sinh ρ sin θ, however x is still undetermined. To find an

expression for it, we need to use the duality relation dx = ∗dy. In particular, we need the

expression for ∗dρ and ∗dθ, and those are provided by the equation (4.2):

1√
1 − e2C

∗ deC = e−BdeA : ∗dθ = dρ (4.5)

This information allows us to find the expression for x, and plugging it into the general

expression for the metric (3.4), we recover AdS5 × S5 space8:

ds2 = L2(cosh2 ρds2
AdS + sinh2 ρds2

2 + sin2 θds2
4 + dρ2 + dθ2) (4.6)

x = L2 cosh ρ cos θ, y = L2 sin ρ sin θ . (4.7)

Once we know the warp factors as functions of x and y, we can use equations (3.16) to

recover the harmonic function Φ which corresponds to AdS5×S5 solution. The result turns

out to be in the form (3.18) with only one dark region with x2 = −x1 = L2:

Φ =
πy

2
+

1

4

[

2y arctan
x − ξ

y
+ (x − ξ) log

[

(x − ξ)2 + y2
]

]ξ=L2

ξ=−L2

. (4.8)

This is analogous to the way in which AdS5 × S5 arose as a “bubbling solution” of [4],

where it corresponded to a harmonic function with sources in a circular dark region.

Starting from AdS5 × S5 space we can recover the flat space in three different ways,

and all of them would correspond to singular limits since one is changing the asymptotics.

The first two ways are similar to the recovery of flat space from the bubbling solutions

of [4]: we decompactify one of the spheres by taking some point on the y = 0 line and

rescaling coordinates to zoom in on this point. For example, if we look near the point in

the dark strip, then it is metric of S4 that has to be rescaled by infinite factor (and metric

of AdS2 is rescaled as well), so we end up with space where directions along S4 and AdS2

became flat, while sphere S2 combines with y direction to give an R3. Near the point in the

light region, S2 and S4 exchange roles. The third way to obtain flat space is to look at the

vicinity of the point where dark region merges with light one, and in [4] such points led to

pp wave metrics. However, in the present case, such nontrivial limit does not exist, and the

only way to obtain a regular geometry is to go all the way to flat space by decompactifying

AdS2 and combining (S2, S4, x, y) into R8.

8The change of variables from (ρ, θ) to (x, y) was found before in [14] by starting from AdS5×S5 solution

and combining the warp factors to produce y and x coordinates. In contrast to this approach of matching

parameters, we derive this solution, and more importantly, we find a connection to the harmonic function.
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5. Perturbative solution

While we were not able to solve the differential equations in the complete generality, it

might be interesting to look at special cases where they allow some analytic treatment.

In the previous section we considered a particular solution corresponding to AdS5 × S5

space and it might be interesting to develop a perturbation theory around this solution.

While such perturbative solution is interesting by itself (for example, its properties can

be compared with CFT computations for Wilson loops), in our case it would play an

important role in demonstrating that the gravity solution exists for any function Φ. In

section 3 we gave a heuristic argument that all solutions have to be parameterized in terms

of a single function and then we claimed that Φ can be viewed as such function. Since we are

interested in solutions that asymptote to AdS5×S5, function Φ would be approaching (4.8)

as we go to infinity of (x, y) plane, in particular the dilaton would approach zero. Then

starting from large values of (x, y) one can start doing perturbation theory in the value of

φ, and as we show in this section, every harmonic function Φ defines a unique perturbative

series. Alternatively, this series can be viewed as an expansion in powers of 1/
√

x2 + y2

and certainly it has a nonvanishing radius of convergence. While we do not show that the

series converges in the entire plane, we expect the metric components and the fluxes to

be analytic, so once we show that there is a unique solution in the asymptotic region we

expect that it can be unambiguously continued to the upper-half plane, and the resulting

solution is guaranteed to be regular by the arguments of section 3.

Let us begin with equations (3.7)–(3.16) and look at them at large values of radial

coordinate in (x, y) plane. If space asymptotes to AdS5 ×S5 (i.e. if all points xm in (3.18)

are bounded as |xm| < x0), then at large distances function Φ approaches (4.8) and the

deviation would lead to a small correction to AdS5×S5. Let us introduce a small parameter

ε and write all functions as expansion in its powers:

G = G(0) +

∞
∑

1

εmg(m), H = H0 +

∞
∑

1

εmh(m), φ =

∞
∑

1

εmφ(m), (5.1)

Φ = ΦAdS + ε(Φ − ΦAdS) ≡ Φ(0) + εΦ(1) .

Here quantities with subscript zero correspond to AdS5 × S5, and by definition, the series

for Φ has only one term. Let us look at equation (3.13) in the m-th order:

dΨ
(m)
2 + ∗dΨ

(m)
1 = xdφ(m) − y ∗ dφ(m) + · · · = d(xφ(m)) − ∗d(yφ(m)) + · · · . (5.2)

Here dots represent the terms containing expressions with orders between one and m − 1.

The terms with φ(m) turned out to be remarkably simple, in particular due to the relation

dx = ∗dy (5.3)

we were able to decompose it into exact and co-exact forms. Suppose we solved the equa-

tions for all orders up to m − 1-th, then in (5.2) we know all terms represented by dots
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explicitly, and we can decompose them into exact and co-exact forms. This implies that9

Ψ
(m)
2 = xφ(m) + Ψ̃

(m)
2 , Ψ

(m)
1 = −yφ(m) + Ψ̃

(m)
1 . (5.4)

These expressions should be substituted into the m-th order of equations (3.7)–(3.16), but

in addition we should expand the terms with G and H in powers of epsilon. Since terms

in orders less than m are known at this point, we can move them to the right hand side,

and the contribution of the m-th order is evaluated in the appendix C. In the end we find:

g(m)

s2 + sh2
− 2φ(m) =

1

y
∂yΦ

(m),

h(m) − g(m) − 4φ(m) + 8s2φ(m) = −
{

2s2

y
∂yΦ

(m) +
2c2

x
∂xΦ(m)

}

. (5.5)

Here Φ(m) contains the contributions from lower orders (the only exception is Φ(1) which

was defined in (5.1)), and thus it is known explicitly. We also introduced a shorthand

notation:

sh = sinh ρ, ch = cosh ρ, s = sin θ, c = cos θ (5.6)

and expressions for these quantities can be obtained by inverting (4.7). Equations (5.5)

allow us to express m-th order solution in terms of one unknown function (for example,

g(m)), and to determine this function we need more equations. In particular, we can take

the y component of equation (3.10):

∂y(h
(m) − g(m) − 4φ(m)) =

8yφ(m)

s2 + sh2
+

4∂yΦ
(m)

s2 + sh2
+ Ψ(m)

y (5.7)

where Ψ
(m)
y contains contributions from lower orders. Using the relations

∂yθ =
sh c

sh2 + s2
,

y

s2 + sh2
= −∂y log c,

1

s2
d(s2 − log c) =

1

sc
(2c2 + 1)dθ = d log

s3

c

we arrive at the final equation

c

s
∂y

(

s3

c

g(m)

2(s2 + sh2)

)

=
1

4
∂y

{

s2

y
∂yΦ

(m) − c2

x
∂xΦ(m)

}

− 1

8
Ψ(m)

y . (5.8)

This completes the proof that starting from any harmonic function Φ which has the same

asymptotics as ΦAdS, we can construct a unique perturbative series around AdS5 × S5

solution, and this series approximates the solution corresponding to Φ at large distances.

We also expect that the series for the dilaton converges everywhere and yields the solution

corresponding to Φ, while series for G and H should converge away from the line y = 0.

9Notice that yφ(m) vanishes at y = 0, this means that to be consistent with (3.14), we should work in a

gauge where Ψ̃(m) vanishes there as well. This is especially important for the first order since it allows us

to choose Ψ̃
(1)
1 = 0.
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6. Analytic continuations

The goal of this paper is an exploration of supersymmetric geometries with AdS2×S2×S4

symmetries, however once we derived the main result (3.4)–(3.11), it can be used for

describing some other solutions as well. In particular, we arrived at AdS2 × S2 × S4

factors by analyzing the field theory configurations and recalling the observations of [15]

that a one-dimensional Wilson line breaks the conformal group in four dimensions down to

SO(2, 2) × SU(2). Similarly, studying domain walls in field theory, one is naturally led to

AdS3 × S1 split of the four dimensional space. It turns out that N = 4 SYM on this space

and on R×S3 has similar structure of BPS states: all of them preserve SO(4) R-symmetry

group. In fact, the geometries dual to BPS states on AdS3 × S1 were constructed in [4]

by making a certain analytic continuation of metrics dual to states in R × S3. In the

present context, it is very natural to ask whether a similar analytic continuation leads to

any interesting statements.

By an analogy with analytic continuation of [4], one may think about exchanging AdS2

and S2 factors in the solution. This can be accomplished by the following replacements:

ds2
AdS ↔ −ds2

S, x → ix′, y → iy′, G → G′ +
πi

2
, H → H ′ +

πi

2
. (6.1)

Substituting this into the equations of motion, we find that after rescaling the fluxes f1,

f2 and redefining F as

f1 → if ′
1, f2 → if ′

2, F → F ′ ≡
√

e2B′ − e2A′ − e2C′ (6.2)

we arrive at the system for the real primed variables:

d(H ′ − G′ − 4φ) = − 2

y′(−e2B′ + e2C′)
(e2C′

dy′ + F ′eB′+C′−A′

dx) (6.3)

1

4
e−2A′−φ/2df ′

1 =
1

−e2A′ + e2B′

[

eA′

F ′dφ − eB′+C′ ∗ dφ
]

, (6.4)

−1

4
e−2B′+φ/2df ′

2 =
1

−e2A′

+ e2B′

[

eB′

F ′dφ − eA′+C′ ∗ dφ
]

(6.5)

eB′

e−4C′ ∗ df3 = eA′

d

(

A′ − φ

2

)

− 1

4
F ′e−φ/2−2A′

df ′
1 (6.6)

∗d arctanh eG′ − i

2
d log

ieA′ − F ′

ieA′ + F ′
+

1

2
e−φ/2−2A′

df ′
1 = 0 .

Notice that we have not simplified the last equation to make its origin more transparent,

but once simplification is done, the factors of i disappear from that equation:

1

2
∗ d log

eG′ − 1

eG′ + 1
− d arctan

eA′

F ′
+

1

2
e−φ/2−2A′

df ′
1 = 0 . (6.7)

One can worry that the system of equations written above does not make sense in type IIB

supergravity since (6.2) seems to suggest that real values of f ′
1 lead to imaginary fluxes in

the original solution and vice versa. However this is not the case. To see this we recall the

expression for the complex three-form G3 in the original variables

G3 = e−φ/2H3 + ieφ/2F3 = e−φ/2df1 ∧ dH2 + ieφ/2df2 ∧ dΩ2 . (6.8)
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In terms of primed variables this expression becomes

G3 = ieφ/2df ′
2 ∧ dH ′

2 − e−φ/2df ′
1 ∧ dΩ′

2 . (6.9)

Here we used the following conventions for continuing the volume factors ( ds2
S ↔ −ds2

H

did not specify the continuation uniquely):

dΩ2 = −idH ′
2, dH2 = idΩ′

2 . (6.10)

We see, that in the new variables there is a NS-NS magnetic and RR electric fields, i.e. we

ended up with configuration of NS5 and D1 branes which is S-dual to the one we started

with. Comparing (6.8) and (6.9), we conclude that the after analytic continuation, the

dilaton is φ′ = −φ, which is consistent with S duality.

If double analytic continuation leads us to the equivalent system, one may wonder why

the equations (6.3)–(6.7) are different from the original system (3.7)–(3.11). To be precise,

there are some similarities: in particular it we write the equations for the fluxes (3.7), (3.8)

in terms of φ′ = −φ, then they go into (6.4) and (6.5) after replacements

A′ → B, B′ → A, φ′ → φ, f ′
1 → −f2, f ′

2 → −f1 . (6.11)

Also equation (6.6) goes into (3.12) under the same replacement. However the two remain-

ing equations (6.3), (6.7) look very much different from their counterparts (3.10), (3.11).

This difference is an artifact of our coordinate choice: in the original frame we defined

y = eB+C+φ, but tracing the fate of y′ under the map (6.11), we find10 that it goes into

eA+C+φ, i.e. we have a description of the same system, but in a different coordinate frame.

While there is nothing wrong in defining a coordinate y′ = eB′+C′+φ, if we do so the points

where S2 shrinks to zero size would be somewhere in the middle of (x′, y′) plane and now

we will discuss the constraints which come from the regularity conditions at these points.

If we start from the system (6.3)–(6.7) and look for regular geometries, we should not

allow the AdS space to shrink to zero size, and since the dilaton should also stay finite, we

conclude that on the entire line y = 0 it is S2 that shrinks to zero size. As we know from

solving the original system, it is impossible to have a nontrivial solution unless radius of S4

also goes to zero at come points and in the new description this should happen somewhere

in the upper half of the plane (i.e. at y > 0). Looking at the equation (6.7) we observe the

behavior of terms that do not contain f ′
1:

S4 shrinks : y = 0, log
eG′ − 1

eG′ + 1
= 0 (6.12)

S2 shrinks : arctan
eA′

F ′
= 0 .

To take into account the flux, we decompose it as in (3.13) and define the harmonic function

Φ′ as in (3.16):

(∂2
x′ + ∂2

y′)Φ′ = 0 :
1

2
log

eG′ − 1

eG′ + 1
+ Ψ′

1 = ∂y′Φ′, arctan
eA′

F ′
+ Ψ′

2 = ∂x′Φ′ . (6.13)

10Notice that in the Appendix A we used a combination of (A.26) to argue that y was a convenient

coordinate. Alternatively, we could add (A.17) to (A.19), this would naturally lead to y′.
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(a)

y

(b) (c)

Figure 3: A pictorial representation of the boundary conditions (3.17) on (x, y) plane (a) and the

lines on which their counterparts (6.16) are imposed (b). Figure (c) gives an example of such lines

which correspond to AdS5 × S5.

Since functions Ψ′
1, Ψ′

2 are defined only up to one harmonic function, we can choose this

function in a way which makes the boundary conditions (6.12) especially convenient

S4 shrinks : y′ = 0, ∂y′Φ′ = 0, Ψ′
1 = 0

S2 shrinks : f(x′, y′) = 0, ∂xΦ′ = 0, Ψ′
2 = 0 . (6.14)

Now we have to find the restriction on a curve f(x′, y′) = 0. Let us consider some point

on this curve where y′ 6= 0 (otherwise, both S2 and S4 shrink to to zero and such special

points require a separate consideration), then we can rewrite equations (6.3) as

∂y′eA′

= eA′

[

−∂y′(C ′ − φ) − e2B′

y′(e2C′ − e2B′)

]

,

∂x′eA′

= −eA′

∂y′(C ′ − φ) − F ′

y′(e2C′ − e2B′)
. (6.15)

Since we are considering the point where eA′

= 0, these two equations imply the the

gradient of eA′

points along x′ direction. In other words, the curves of eA′

= 0 are located

at the fixed value of x′. Then we have to impose the boundary conditions along the straight

lines depicted in figure 3b:

S4 shrinks : y′ = 0, ∂y′Φ′ = 0, Ψ′
1 = 0

S2 shrinks : x′ = xi, 0 < y′ < yi, ∂x′Φ′ = 0, Ψ′
2 = 0 . (6.16)

Thus the solution is parameterized by a set of pairs (xi, yi), then one has to solve the

Laplace equation with boundary conditions (6.16). The resulting harmonic function Φ′

leads to a unique geometry which is guaranteed to be regular.

As in section 4, we can show that setting three-form to zero, we end up with a unique

solution, which describes AdS5 × S5. Rather than repeating those arguments here, we

just state the result that AdS5 × S5 corresponds to the boundary conditions along the

curve depicted in figure 3c. Notice that the junction of the vertical and horizontal lines
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is universal (one can rescale the coordinates to zoom in on this point), and AdS5 × S5

example demonstrates that no additional singularity develops at such junction.11

To summarize, we showed that performing a double analytic continuation (6.1) which

exchanges AdS2 and S2, one arrives at an alternative description of the same system which

uses a different coordinate frame. However in that frame one can also formulate very simple

boundary conditions (6.16), so we have two equivalent ways of looking at geometries with

AdS2 × S2 × S4 factors. We now discuss another analytic continuation which leads to a

description of new geometries.

In the geometry (3.4) we have two spheres, so one can perform one more continuation:

ds2
AdS2

→ −ds2
S2

ds2
S4 → −ds2

AdS4

,
x → ix′

y → iy′
, G → G′ − πi

2
, H → H ′ +

πi

2
,

f1 → if ′
1

f3 → if ′
3

(6.17)

The resulting geometry is governed by the equations:

d(H ′ − G′ − 4φ) = − 2

y′(e2B′ − e2C′)
(−e2C′

dy′ + F ′eB′+C′−A′

dx′) (6.18)

−1

4
e−2A′−φ/2df ′

1 =
e−φ

e2A′ + e2B′

[

eA′+φF ′dφ − y′ ∗ dφ
]

,

1

4
e−2B′+φ/2df2 =

1

e2A′ + e2B′

[

−eB′

Fdφ − eA′+C′ ∗ dφ
]

eB′

e−4C′ ∗ df ′
3 = eA′

d

(

A′ − φ

2

)

− 1

4
F ′e−φ/2−2A′

df ′
1

∗d arctan(−ieG′

) +
1

2
d log

ieA′ − F ′

ieA′ + F ′
+

i

2
e−φ/2−2A′

df ′
1 = 0 (6.19)

F ′ ≡
√

e2C′ − e2B′ − e2A′ (6.20)

For the reference we also give a complete set of SUGRA fields for this case:

ds2 = e2A′

(dΩ′
2)

2 + e2B′

dΩ2
2 + e2C′

(dH ′
4)

2 +
e−2φ

e2C′ − e2B′

(

(dx′)2 + (dy′)2
)

F5 = df ′
3 ∧ dH ′

4 + ∗10(df
′
3 ∧ dH ′

4), H3 = df ′
1 ∧ dΩ′

2, F3 = df2 ∧ dΩ2 (6.21)

e2A′

= y′eH′−φ, e2B′

= y′eG′−φ, e2C′

= y′e−G′−φ,

This time the harmonic function Φ′ is defined by

(∂2
x′ + ∂2

y′)Φ′ = 0 :
1

2
log

1 − eG′

eG′ + 1
+ Ψ′

1 = ∂y′Φ′, − arctan
eA′

F ′
+ Ψ′

2 = ∂x′Φ′ (6.22)

Notice that for this continuation we again have to impose the boundary conditions at y′ = 0

(where one of the S2’s goes to zero size), and on certain lines x′ = x0, y′ > y0 similar to

11It is interesting to observe that the boundary conditions on surfaces similar to ones depicted in figure

3b were encountered in a description of BPS geometries in M theory [24]. However, unlike the present

case which has simple Neumann boundary conditions on such curves, the boundary conditions discussed in

[24] were more complicated (in that case there was one more coordinate and the ”lines” x = xi actually

represented the disks).
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what we had in (6.16):

S2 shrinks : y′ = 0, ∂y′Φ′ = 0, Ψ′
1 = 0

S̃2 shrinks : x′ = xi, y′ > yi > 0, ∂x′Φ′ = 0, Ψ′
2 = 0 (6.23)

Of course, there is an alternative way of solving the system with AdS4 × S2 × S2 factors

which is based on introducing a more convenient coordinate ỹ = eA′+B′−φ′

, but we will not

explore this further.

7. Back to the brane probes

As we showed in section 3, to find geometries with AdS2 × S2 × S4 factors, one needs to

solve a system (3.4)–(3.11). Although we were not able to find new nontrivial solutions

of this system, we demonstrated that for the spaces which asymptote to AdS5 × S5, the

geometries are uniquely parameterized by one harmonic function Φ. Now we want to study

some qualitative properties of the solutions and show that they are in a perfect agreement

with expectations from the brane probe analysis which was presented in section 2.

We begin with discussing the topology of the solutions. Let us consider a generic

boundary condition depicted in figure 2. In the light region, the S4 shrinks to zero size,

so it is useful to take a contour depicted in 4a and construct a five dimensional manifold

as a warped product of this contour and S4. Restricting metric (3.4) to this manifold, we

find that as y approaches zero, the volume of S4 goes to zero as well and near such points

metric is approximated by

ds2
5 = F(dy2 + y2dΩ2

4) (7.1)

and it looks like a north pole of S5. We conclude that the five manifold that we just

described has a topology of S5, moreover if there is a dark region between the two endpoints

of the contour, (as in figure 4a), this S5 is not contractible. This is analogous to S5

which emerged in [4] by combining three dimensional sphere and a certain two-dimensional

surface. Moreover, for the AdS5 ×S5 solution, the five sphere which we described here and

the one discussed in [4] are the same, and they simply correspond to the S5 factor in the

geometry.

Since we have a non-contractible five-manifold and there is a nontrivial five-form field

strength, it leads to a non-zero flux over such manifold. We see that the dark strips on the

y = 0 line serve as sources of D3 branes, and by the symmetry arguments one can see that

these branes have AdS2×S2 worldvolume. Then we conclude that the dark strips describe

a gravitational backreaction of D3 branes which were discussed in section 2.

A similar analysis can be performed for contours which end in the dark regions (see

figure 4b). In this case we take a contour and fibrate S2 over it, then we arrive at a

non-contractible three-manifold which has a topology of S3. Since we have a magnetic RR

three-form, it can have a non-zero flux over such manifold. Then we conclude that the light

strips describe gravity solutions for the polarized D5 branes which were discussed in section

2. Of course, the language of D3 branes and D5 branes is only appropriate when we have
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(b)

y

y

(a)

Figure 4: The geometries described in this paper have non-trivial topologies which are character-

ized by non-contractible 3- and 5-cycles. To construct a five-cycle, one looks at a contour depicted in

figure (a) and fibrates S4 over it. The three-cycles are constructed in a similar ways using contours

from figure b and S2.

a small dark strip inside a long light region or vice versa, otherwise one has a background

were all fluxes are turned on and are comparable in strength. As far as topology of the

solution is concerned, we conclude that it is completely determined by the topology of the

dark regions on y = 0 line, and thus it is uniquely specified by the set of non-contractible

three- and five-cycles.

8. Discussion

While we have a very good understanding of supersymmetric branes in flat space, the

picture is less clear for the branes in curved spacetimes. Starting from the original discovery

of giant gravitons [7], there was a remarkable progress in understanding branes in AdS

spaces [25], but most of the work was devoted to studying the brane probe approximation.

Such branes are usually curved and to stabilize their shape, they are either moving or have

some fluxes on the worldvolume, and the stabilization happens via interaction between such

fluxes and background RR field. It would be nice to understand the geometries produced by

such curved branes and for the giant gravitons of [7] this problem was solved in [4]. In this

paper we looked at another class of 1/2 BPS branes which are supported by fluxes rather

than angular momentum and we showed that, as in [4], the geometries are parameterized by

one harmonic function with very simple boundary conditions. Unfortunately, to translate

this harmonic function into the explicit metric, one still has to solve certain differential

equations and we showed that such solution is unique. This is in sharp contrast to a

situation in [4] where one starts form a harmonic function and recovers the geometry by

simple algebraic manipulations. It would be nice if better understanding of equations (3.7)–

(3.16) could lead to a similar picture for our geometries as well.

In this paper we discussed only the branes which preserve half of supersymmetries in

AdS5 × S5, just as [4] dealt with 1/2 BPS states but with different bosonic symmetries.
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It would be interesting to understand the geometries which preserve less supersymmetries,

especially since they have a very nice description in the brane probe approximation. For

example, giant gravitons that preserve 1/4 and 1/8 of the supersymmetries, are described

in terms of the holomorphic surfaces [26]. In particular, such giant gravitons still preserve

S3 × R symmetry which comes from the AdS part of the geometry, but another SO(4)

(which was crucial for the construction of [4]) is broken. Unfortunately the problem of

finding the gravity solutions for such branes reduces to a complicated equation of the

Monge-Ampere type, and it is not clear what can be learned from it. However, on the field

theory side, the interesting progress was made in [27], where it was argued that metrics

could arise as semiclassical limit of matrix models. Although so far this approach has not

led to any explicit solutions, this direction appears to be very promising.

Recently, the analog of giant gravitons preserving 8 supersymmetries was discussed

in the context of branes which are dual Wilson lines [28], and such objects are expected

to preserve AdS2 × S2 symmetries. It would be interesting to study the gravitational

description of such objects in a way similar to the one that we discussed here.
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A. Solving gravity equations

The main goal of this paper is to find supersymmetric geometries which contain AdS2 ×
S2 ×S4 factors. The motivation for doing this was given in section 2, and in this appendix

we give some technical steps which led to the final solution (3.4)–(3.11).

A.1 Formulation of the problem

We are looking for supersymmetric solutions of type IIB supergravity, so we begin with

summarizing the fermionic variations using the standard notation of [29]:

δλ = i6 Pε∗ − i

24
γmnpGmnpε = 0

δψM =

(

∇M − i

2
QM

)

ε +
i

480
6 F 5γM ε +

1

96
(−γM 6 G − 26 GγM )ε∗ (A.1)

Supersymmetry parameter ε is a complex Weyl spinor (Γ11ε = −ε), and the expressions

for two vectors Qm, Pm and a scalar B can be found in [29] (see also [30]). Below we will

write such expressions for a special case.
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Equations (A.1) give SUSY variations for any bosonic background of type IIB SUGRA,

but we will need a truncated version of these equations. As argued in section 3, we are

interested in solutions with vanishing axion C(0), this implies that τ = ie−φ, Qµ = 0, and

Pµ =

(

1 −
[

1 − e−φ

1 + e−φ

]2
)−1

∂µ
1 − e−φ

1 + e−φ
=

(1 + e−φ)2

4e−φ
∂µ

2

1 + e−φ
=

1

2
∂µφ (A.2)

B =
1 − e−φ

1 + e−φ
, f−2 =

4e−φ

(1 + e−φ)2
,

G3 = f(H3 + iF3 − BH3 + iBF3) = e−φ/2H3 + ieφ/2F3 (A.3)

Substituting these expressions into (A.1), we arrive at the equations which will be analyzed

in the remaining part of this appendix:

δλ = i6 ∂φε∗ − i

24
γmnpGmnpε = 0 (A.4)

δψM = ∇M ε +
i

480
6 F 5γM ε +

1

96
(−γM 6 G − 26 GγM )ε∗ = 0 (A.5)

The metric and fluxes are given by equations (3.1), (3.3) and it might be useful to reproduce

them here:

ds2 = e2AdH2
2 + e2BdΩ2

2 + e2CdΩ2
4 + hijdxidxj (A.6)

F5 = df3 ∧ dΩ4 + ∗10(df3 ∧ dΩ4), H3 = df1 ∧ dH2, F3 = df2 ∧ dΩ2, eφ (A.7)

Equations (A.6) guarantee that all bosonic fields have the required symmetry, but we

also need to impose the symmetry on the spinor ε. To do this we need to review a con-

struction of spinors on even-dimensional spheres (spinors on AdS are trivial modifications

of those) and we devote Appendix B to such review. Here we just summarize the results.

Let us look at a covariant derivative ∇m along one of the directions of S2 and rewrite it in

terms of covariant derivative ∇̃m on a unit two-sphere:

∇mε = ∇̃mε − 1

2
γµ

m∂µB (A.8)

In the appendix B it is shown that the derivative on a unit sphere can be written in terms of

hermitean matrix PS which anticommutes with chirality operator on S2 and with gamma

matrices along the direction orthogonal to this sphere12:

∇̃mε = − i

2
e−BγmPSε (A.9)

We can now write the complete derivative of the spinor along S2 direction as well as

derivatives along S4 and AdS2:

S2 : ∇m = −1

2
γm(ie−BPS − 6 ∂B)

AdS2 : ∇m = −1

2
γm(−e−APH − 6 ∂A), (A.10)

S4 : ∇m = −1

2
γm(ie−CPΩ − 6 ∂C) .

12In that appendix we always considered reduced gamma matrices γ̃m, while here we are writing the

ten-dimensional ones. This explains an extra factor of e−B in (A.9) compared to (B.20).
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The final ingredient which is needed to write down the equations is the expressions for the

fluxes. Looking at the formula for the five form flux and using projection Γ11ε = −ε, we

observe that 6 F 5ε can be expressed in terms of f3 and we don’t have to evaluate the dual

piece:

6 F 5ε = 2 × 5! × e−4C 6 ∂f3ΓΩε,
1

480
6 F 5ε =

e−4C

2
6 ∂f3ΓΩε . (A.11)

Here ΓΩ is a hermitean chirality matrix on S4, and we also introduce analogous matrices

on S2 (calling it ΓS) and AdS2 (it will be denoted ΓH). Notice that the equations (A.1) are

formulated in a basis where all gamma matrices are real, this implies that ΓS is imaginary,

while ΓH ,ΓΩ are real. While we will not use an explicit form of gamma matrices, their

reality and symmetry properties will be important. And rather than summarizing these

properties in words, we write an explicit basis of gamma matrices which satisfies all the

requirements, so the reader can consult this equation:

PH = σ2 ⊗ σ2 ⊗ 14, PS = σ2 ⊗ σ3 ⊗ σ3 ⊗ 12, PΩ = σ2 ⊗ σ3 ⊗ σ2 ⊗ σ2

ΓH = 12 ⊗ σ3 ⊗ 14, ΓS = 14 ⊗ σ2 ⊗ 12, ΓΩ = 18 ⊗ σ3, Γ1,2 = σ3,1 ⊗ 18

Γ11 = −iΓ1Γ2ΓΩΓSΓH = σ2 ⊗ σ3 ⊗ σ2 ⊗ σ3 (A.12)

A straightforward computation leads to the expression for the three-form flux:

1

24
6 G = −1

4
(eφ/2−2B 6 ∂f2ΓS + e−φ/2−2A 6 ∂f1ΓH) (A.13)

The first term in the right hand side of this equation is pure imaginary, while the second

term is real. Since at some point we will need to do complex conjugation, it is useful to

define two matrices13:

G+ = −1

4
e−φ/2−2A 6 ∂f1ΓH , G− = −1

4
eφ/2−2B 6 ∂f2ΓS , (G±)∗ = ±G± (A.14)

and express the three form flux in terms of them:

1

24
6 G = G+ + G− (A.15)

Using all this information, we arrive at the final set of equations:

6 ∂φε∗ − (G+ + G−)ε = 0, 6 ∂φε − (G+ − G−)ε∗ = 0 (A.16)

(e−APH + 6 ∂A)ε − ie−4C 6 ∂f3ΓΩε +
1

2
(−3G+ + G−)ε∗ = 0 (A.17)

(−ie−BPS + 6 ∂B)ε − ie−4C 6 ∂f3ΓΩε +
1

2
(G+ − 3G−)ε∗ = 0 (A.18)

(−ie−CPΩ + 6 ∂C)ε + ie−4C 6 ∂f3ΓΩε +
1

2
(G+ + G−)ε∗ = 0 (A.19)

∇µε + i
e−4C

2
6 ∂f3γµΓΩε +

1

96
(γµ 6 G − 2{6 G, γµ})ε∗ = 0 . (A.20)

13We use the following sign conventions for ΓS , ΓH , ΓΩ. If Γ0, Γ9 are gamma matrices corresponding to

AdS2 factor, Γ7, Γ8 are matrices corresponding to S2 and Γ3, . . . , Γ6 are the ones for S4, then we define

ΓH = −Γ0Γ9, ΓS = −iΓ7Γ8, ΓΩ = Γ3Γ4Γ5Γ6. Also thorough this paper we use Γ to denote matrices with

frame indices (which square to ±1), and γ stands for the matrices with spacetime indices.

– 24 –



J
H
E
P
0
6
(
2
0
0
6
)
0
2
6

Notice that the second equation in (A.16) is just a complex conjugate of the first one, but

for future reference it is convenient to keep them together. It would also be useful to write

a hermitean conjugate of the last system:

εT 6 ∂φ − ε†(G+ + G−) = 0, ε† 6 ∂φ − εT (G+ − G−) = 0 (A.21)

ε†(e−APH + 6 ∂A) + ie−4Cε† 6 ∂f3ΓΩ +
1

2
εT (−3G+ + G−) = 0 (A.22)

ε†(ie−BPS + 6 ∂B) + ie−4Cε† 6 ∂f3ΓΩ +
1

2
εT (G+ − 3G−) = 0 (A.23)

ε†(ie−CPΩ + 6 ∂C) − ie−4Cε† 6 ∂f3ΓΩ +
1

2
εT (G+ + G−) = 0 (A.24)

∇µε† − i
e−4C

2
ε†γµ 6 ∂f3ΓΩ +

1

96
εT (6 G†γµ − 2{6 G†, γµ}) = 0 . (A.25)

To summarize, we showed that the problem of finding supersymmetric solution with metric

and fluxes (A.6) reduces to solving the system (A.16)–(A.20). In the remaining part of this

appendix we will simplify this system and show that its solutions can be parameterized in

terms of one harmonic function.

A.2 Choosing coordinates and evaluating the metric

Before we start solving differential equations, it is useful to recall that metric (A.6) is

invariant under reparameterizations of x1, x2 plane, and one can use this symmetry to

choose a convenient coordinate system. We begin with adding equations (A.18), (A.19)

and the second equation in (A.16):

[

−ie−BPS − ie−CPΩ + 6 ∂(B + C + φ)
]

ε = 0 . (A.26)

This is a projector which generically contains four gamma matrices, but by appropriate

choice of coordinates and vielbein, we can express it in terms of three matrices. Namely

we define a coordinate y by a relation y = eB+C+φ, then in two dimensions we can always

choose another coordinate x to be orthogonal to y. Then metric becomes diagonal and we

choose a convenient vielbein:

gijdxidxj = g2(dy2 + h2dx2), eŷ
y = g, ex̂

x = gh . (A.27)

In this coordinate frame the relation (A.26) becomes

[

−ie−BPS − ie−CPΩ +
1

yg
Γy

]

ε = 0 . (A.28)

We already related the product of the warp factors of the spheres with the value of coordi-

nate y, now it is convenient to parameterize their ratio by function G. Then the condition

for the last equation to be a projector leads to an expression for g in terms of G:

e2B = ye−φ+G, e2C = ye−φ−G, g2 =
e−φ

2y cosh G
. (A.29)
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The projector itself can also be expressed in terms of G:
[

ie−G/2PS + ieG/2PΩ −
√

eG + e−GΓy

]

ε = 0 (A.30)

and this expression can be further simplified by introducing a rescaled spinor ε1:

ε = e−δPΩPSε1, (iPΩ − Γy)ε1 = 0, cos 2δ =
eG/2

√
eG + e−G

. (A.31)

Once this projection is imposed, the equations (A.18), (A.19) and (A.16) become linearly

dependent and we can disregard equation (A.18).

There is one more more combination of (A.16)–(A.19) which does not contain fluxes:

adding (A.17) and (A.19) and subtracting (A.16), we find a projector14

(e−APH − ie−CPΩ + 6 ∂(A + C − φ))ε = 0 :

(e−APH − ie−C(cδPΩ − sδPS) + 6 ∂(A + C − φ))ε1 = 0 . (A.32)

We wrote this equation in terms of ε1 because this spinor satisfies a very simple projection

relation (A.31). In particular, acting on the last equation by (Γy ± iPΩ), we find two

relations:
(

e−APH + ie−CsδPS +
1

gh
Γx∂x(A + C − φ)

)

ε1 = 0,

(

−e−Ccδ +
1

g
∂y(A + C − φ)

)

ε1 = 0 .

The first equation suggests that it is convenient to rescale a spinor one more time and to

define a useful function F :

ε1 = eiσPSPH ε0, tanh 2σ = e−A
√

e2B + e2C , F =
√

e2A − e2B − e2C . (A.33)

This leads to a simple expressions for the derivatives of A + C − φ:

∂y(A + C − φ) =
eG

y(eG + e−G)
, ∂x(A + C − φ) = − αhFe−A

y(eG + e−G)
(A.34)

and to a simple projection relation

[iPS − αΓx] ε0 = 0 . (A.35)

Here α is a parameter which is equal to plus or minus one, and we will fix its value later.

As before, we conclude that the system (A.34), (A.35) can be viewed as a replacement for

the equation (A.19).

14In this paper we encounter numerous trigonometric and hyperbolic functions of various arguments. To

avoid writing formulas which are unnecessarily long, we adopt a shorthand notation:

sx ≡ sin x, cx ≡ cos x, shx ≡ sinhx, chx ≡ cosh x

.
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At this point the metric is still invariant under reparameterizations of x and it would

be nice to find a convenient gauge. Under such reparameterizations, it is only function h

which changes, so to fix the gauge we will need to know the y-dependence of h. The simplest

way to address this question is to look at certain spinor bilinears and find the differential

equations for them. Notice, that in principle to find a supersymmetric background it is

sufficient to analyze all spinor bilinears, and this technique was very fruitful in the recent

years [31]. In particular, in [4] it was used to find 1/2 BPS geometries with SO(4)× SO(4)

symmetry which is analogous to the problem which we are considering. However in this

paper we mostly work with spinors directly, and one of the reason for this is that one can

construct many bilinears by placing matrices PH , PS , PΩ, ΓH , ΓS, PΩ, γ1,2 between spinors

and many of these bilinears turn out to be zero. Also some of the bilinears in the set are

equal to others, so it appears that the exhaustive analysis of bilinears in the present case

would be longer than a direct search for a solution of spinor equations. However we will

now use some of the bilinears to determine the function h.

Since we want to find a differential equation for ex̂
x, it is natural to start from a vector

bilinear which has only a component along x direction. The projection (A.31) shows that

one such bilinear is15

ε†ΓΩγµPΩε = ε†1ΓΩγµPΩε1 : ε†ΓΩγyPΩε = 0, ε†ΓΩγxPΩε = ex̂
xε†1ΓΩσ̂2ε1 .

One-form constructed from this vector can be expressed in terms of a scalar bilinear:

ε†ΓΩγµPΩε dxµ = ex̂
xey

ŷe
−φ−Bε†ΓΩσ̂2ε dx = he−φ−Bε†ΓΩσ̂2ε dx . (A.36)

Knowing an exterior derivative of this vector as well as coordinate dependence of the scalar

bilinear, we can extract a y-dependence of h. We begin with computation of the exterior

derivative using (A.20):

∇µ(ε†ΓΩγνPΩε) +
i

2
e−4C

(

ε†ΓΩγνPΩ 6 ∂f3γµΓΩε − hc
)

−1

4

[

ε†ΓΩγνPΩ(γµ(G+ + G−) + 2(G+ + G−)γµ)ε∗ + hc
]

= 0 .

Using (A.16) to exclude G−ε∗ from this expression, and taking antisymmetric part in µ, ν

indices, we find

∇[µ(ε†ΓΩγν]PΩε) +
1

4

[

ε†ΓΩPΩ

(

γνµ(−6 ∂φε + 2G+ε∗) + 2γ[ν(G+ + G−)γµ]ε
∗
)

+ hc
]

= 0 .

Noticing that

ΓxΓλΓy − ΓyΓλΓx = 2δx
λ(Γy − Γy) − ΓλΓxy − ΓxyΓλ = 0

we simplify the equation above:

∇[µ(ε†ΓΩγν]PΩε) − i

4
εµν

[

ε†ΓΩPΩσ̂2(−6 ∂φε + 2G+ε∗) + hc
]

= 0 . (A.37)

15We are using conventions ΓxΓy = iσ̂2.
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Now one can use the explicit form of G+ along with relation ΓH = ΓT
H to evaluate the

transpose of the term involving field strength:

(ε†ΓΩPΩσ̂2G+ε∗)T = −ε†ΓΩPΩσ̂2G+ε∗ = 0 . (A.38)

Then finally get an equation

∇[µ(ε†ΓΩγν]PΩε) +
i

2
εµνε†ΓΩPΩσ̂2 6 ∂φε = 0 .

Writing this in terms of forms, and taking a coefficient in front of dy ∧ dx, we find:

∂y(he−φ−Bε†ΓΩσ̂2ε) + he−φ−Bε†ΓΩσ̂2ε ∂yφ = 0. (A.39)

To extract a y-dependence of h we need to know a functional form of the bilinear appearing

in this relation. Starting from differential equations (A.20), (A.25) one can write an ex-

pression for the derivative of this bilinear, then using (A.16) to remove G+ from the result,

one arrives at

∇µ(ε†σ̂2ΓΩε) + i
e−4C

2
ε†σ̂2[6 ∂f3, γµ]ε −

(

1

2
ε†σ̂2ΓΩγµG−ε∗ − 1

4
∂µφε†σ̂2ΓΩε + hc

)

= 0 .

(A.40)

The term involving three-form can be evaluated by looking at combination of (A.16) and

(A.18):

[

−ie−BPS + 6 ∂
(

B +
φ

2

)

− ie−4C 6 ∂f3ΓΩ

]

ε − G−ε∗ = 0

and at the conjugate relation. This leads to equation

1

2

(

ε†σ̂2ΓΩγµG−ε∗ + hc
)

= ε†σ̂2ΓΩ

[

∂µ

(

B +
φ

2

)

− i

2
e−4C [γµ, 6 ∂f3]ΓΩ

]

ε . (A.41)

Substituting this into the equation for the scalar bilinear, we find a very simple relation

which can be solved in terms of one integration constant c1:

∇µ(ε†σ̂2ΓΩε) − ε†σ̂2ΓΩε ∂µB = 0 : ε†σ̂2ΓΩε = c1e
B (A.42)

We will show below that c1 is not equal to zero (see equation (A.59)) and this fact will not

rely on a particular value of h. It is only for presentational purposes that we postpone the

derivation of (A.59) until the next subsection. Substituting (A.42) into (A.39) and dividing

result by non-vanishing c1, we conclude that function h does not depend on y, so we can

choose a gauge where h = 1.

To summarize, we fixed the diffeomorphism-invariance in the metric, and we shown

that it can be written in terms of two independent warp factors and the dilaton:

ds2 = e2AdH2
2 + e2BdΩ2

2 + e2CdΩ2
4 +

e−2φ

e2B + e2C
(dx2 + dy2) (A.43)

e2A = yeH−φ, e2B = yeG−φ, e2C = ye−G−φ .
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Notice that this result was already obtained in [14], but to be able to go further, we had to

re-derive it in the standard notation. We also showed that the Killing spinor should satisfy

four algebraic relations: (A.16), (A.17) and

[iPS − αΓx] ε0 = 0, [iPΩ − Γy]ε0 = 0, ε = e−δPΩPSeiσPSPH ε0 (A.44)

Along with differential equations (A.20) and (A.34), these relations give a complete system

of equations which we solve in the next subsection. We conclude by rewriting the differential

equations (A.34) in terms of G and H:

1

2
∂y(H − G − 4φ) = − e−G

y(eG + e−G)
,

1

2
∂x(H − G − 4φ) = − αFe−A

y(eG + e−G)
(A.45)

A.3 Evaluating the fluxes

We begin with looking at the dilatino variation (A.20) and rewriting it in terms of ε0:

6 ∂φε∗0 − (e−2iσPSPHG+ + c2δe
−2iσPSPH G− + s2δPΩPSG−)ε0 = 0 (A.46)

We want to take various projections of this equation, and it seems convenient to write the

matrices G+ and G− in terms of scalars:

G+ ≡ G+,xγxΓH + G+,yγ
yΓH , G− ≡ G−,xγxΓS + G−,yγ

yΓS (A.47)

Let us act on (A.46) by γx(1+iΓyPΩ) then using the relation PΩPSΓyΓxε1 = αε1, we arrive

at the equation

∂xφε∗0 −
(

e−2iσPSPHG+,xΓH + c2δe
−2iσPSPH G−,xΓS + αs2δG−,yΓS

)

ε0 = 0 (A.48)

Projecting this relation by (1 ± iαΓxPS), we find :

∂xφε∗0 − (ch2σG+,xΓH − ic2δsh2σPSPHG−,xΓS)ε0 = 0

−iΓSPSΓHPHε0 sh2σG+,x = (c2δch2σG−,x + αs2δG−,y)ε0 (A.49)

Assuming the the three-form flux doesn’t vanish, we conclude that there is an additional

projection relation:

iΓSPSΓHPHε0 = βε0 (A.50)

where β = ±1. Then equations (A.49) can be rewritten as

c2δch2σG−,x + αs2δG−,y + βsh2σG+,x = 0 (A.51)

∂xφΓHε∗0 − (ch2σG+,x + βc2δsh2σG−,x)ε0 = 0 (A.52)

Since all coefficients in the last equation are real, for solutions with nontrivial dilaton there

is one more restriction on ε0:

ΓHε∗0 = aε0, a = ±1 . (A.53)
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Similarly, acting on (A.46) by γy(1 − iΓyPΩ), we find

c2δch2σG−,y − αs2δG−,x + βsh2σG+,y = 0 (A.54)

∂yφΓHε∗0 − (ch2σG+,y + βc2δsh2σG−,y)ε0 = 0 (A.55)

Notice that if dilaton is equal to constant, then we get a homogeneous system of equations

for four components of flux, and the determinant of the appropriate matrix is equal to ch2
2σ−

1
2sh2

2σs4δ > 0, so it we want a solution with nontrivial three-form flux, the dilaton should

not vanish and projection (A.53) should be enforced. For a vanishing three-form flux, the

spinor can be chosen to be real, but we can choose a modified ”reality condition” (A.53)

as well. Substituting the expressions for G±,x and G±,y in (A.51)–(A.55) and rewriting the

result in terms of differential forms, we arrive at two equations:

−βsh2σe−φ/2−2Adf1 = eφ/2−2B [c2δch2σdf2 + αs2δ ∗ df2] (A.56)

adφ = −1

4

[

ch2σe−φ/2−2Adf1 + βeφ/2−2Bc2δsh2σdf2

]

(A.57)

Here and below the star represents a Hodge duality in two dimensions with a sign con-

vention: ∗dy = dx. The last two relations can be viewed as equations for df1 and df2 and

straightforward algebraic manipulations lead to the solution of this system:

df1 = −4ae2A+φ/2

e2A − e2B

[

eAFdφ − αeB+C ∗ dφ
]

df2 = 4aβ
e−φ/2+2B

e2A − e2B

[

eBFdφ − αeA+C ∗ dφ
]

(A.58)

Let us pause for a moment and collect all projection relations which have been imposed

on ε0 so far. We have (A.44), (A.50), (A.53) and the standard projector with Γ11, and

these five projectors commute with each other. One can also check that these projectors

are independent (for example, using the explicit basis (A.12)), so they reduce a dimension

of a spinor by a factor of 25 = 32. Notice that in the basis (A.12) we have a 16-component

complex spinor, so the projections imply that it can be parameterized in terms of one real

function16. This explains why we chose to work with spinor directly rather than to write

down all bilinears following [4]: to determine the spinor completely we only need one real

bilinear out of a large set of expressions. In fact we already encountered a useful bilinear

in (A.42), now we will take a closer look at it.

First we want to show that c1 is a non-vanishing constant. To this end we will use

various projectors to express the bilinear (A.42) in terms of ε0:

ε†σ̂2ΓΩε = c2δε
†
0σ̂2ΓΩ(i sh2σPSPH)ε0 = βc2δsh2σε†0σ̂2ΓΩΓSΓHε0 = −βc2δsh2σε†0ε0 .(A.59)

Here we used the definition of Γ11 as well as projection which it imposes:

Γ11 = −iΓxΓyΓΩΓSΓH = σ̂2ΓΩΓSΓH , Γ11ε = −ε . (A.60)

16Of course, the spinor in type IIB supergravity has 32 complex components (before the Γ11 projection

is imposed), but we suppressed the directions along the spheres and AdS. So starting with complex spinor

which has one real component in our notation, we produce an object which has 2 × 2 × 4 = 16 real

components. This is expected since we are looking at states which preserve 1/2 of supersymmetries.
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Equation (A.59) implies that unless the Killing spinor ε0 is identically equal to zero, the

bilinear ε†σ̂2ΓΩε does not vanish, which proves that coefficient c1 in (A.42) is not equal

to zero17, then we can rescale a spinor ε0 to set c1 = −β. Now equation (A.40) can

be viewed as a differential equation for B, and since one bilinear determined the Killing

spinor completely, the relation (A.40) along with projectors that we discussed is equivalent

to (A.20). Substituting the value of G− into (A.40), we find a simple differential equation:

∂µ(−βeB) + e−4Cε†ε εµν∂νf3 −
β

2
eB∂µφ +

1

8
e−2B+φ/2∂µf2

[

ε†σ̂2ΓΩΓSε∗ + cc
]

= 0 . (A.61)

Using various projectors, we evaluate the bilinears that appear in this expression:

ε†ε = ch2σε†0ε0 =
eA

F

eB

c2δsh2σ
=

eA

F
F = eA (A.62)

εT σ̂2ΓΩΓSε = −εT
0 ΓHε0 = −a ε†0ε0 = −aF (A.63)

Substituting this into (A.61) and rewriting the result in terms of forms, we find the expres-

sion for the five-form flux:

βe−4C+A ∗ df3 = eBd

(

B +
φ

2

)

+
aβ

4
Fe−2B+φ/2df2 . (A.64)

This equation replaces (A.20). For future reference we write an alternative form of the last

equation, which can be obtained by combining it with (A.34) and (A.58):

βe−4C+B ∗ df3 = eAd

(

A − φ

2

)

+
a

4
Fe−2A−φ/2df1 (A.65)

At this point the complete system of bosonic equations is given by (A.34), (A.58), (A.65),

and in addition we should keep one of the three equations (A.17)–(A.19). Let us look

at (A.18) and rewrite it in terms of ε0:
[

−ie−BPS+eiσPSPHe−2δPΩPSeiσPSPH 6 ∂
(

B +
φ

2

)

−ie−4Ce2iσPSPH 6 ∂f3ΓΩ

]

ε0 − G−ε∗0 =0 .

(A.66)

Here we also used the dilatino equation to eliminate G+. To proceed it is useful to combine

the projection relations for ε0 to construct one more projector:

S = αΓxΓyPSPΩ : Sε1 = ε1, Sε∗1 = ε∗1 (A.67)

We can now decompose (A.66) into two equations by applying 1±S to it. It turns our that

after acting by 1 + S on (A.66), we get an equation which is equivalent to (A.64), however

acting by 1 − S we find a new relation:
[

−ie−BPS + (c2δch2σ − PΩPSs2δ)6 ∂
(

B +
φ

2

)

+ e−4Csh2σPSPH 6 ∂f3ΓΩ

]

ε0 = 0

[

−ie−Bασ̂2Γy + (c2δch2σ + iασ̂2s2δ)6 ∂
(

B +
φ

2

)

+ iβσ̂2e
−4Csh2σ 6 ∂f3

]

ε0 = 0 .

17Although in this subsection we already took h = 1, one can show that all projection relations remain the

same for an arbitrary h, so to arrive at relation (A.59) one does not rely on equation (A.42) (otherwise the

logic would be circular). We chose to write equations in this order only to avoid unnecessary complications.
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Noticing that the first term can be expressed in terms of derivative as

−ie−Bασ̂2Γy = −iασ̂2
e−B−φ

√
e2B + e2C

6 ∂y = −iασ̂2s2δ 6 ∂ log y, (A.68)

we find the last projection relation:
[

ic2δch2σσ̂2 6 ∂
(

B +
φ

2

)

− αs2δ 6 ∂
(

B +
φ

2
− log y

)

+ βe−4Csh2σ 6 ∂f3

]

ε0 = 0 . (A.69)

As we mentioned before, at this point ε0 is essentially a one-component spinor, so we cannot

impose any more restrictions on it. This implies that in (A.69) the coefficients in front of

Γx and Γy have to vanish separately. An alternative way of seeing this to act on (A.69) by

(1 − iαΓxPS) and to use the projector (A.35). Thus we end up with equation

βe−4C ∗ df3 =
eA+B

e2B + e2C
d

(

B +
φ

2

)

+ α
FeC

e2B + e2C
∗ d

(

B +
φ

2
− log y

)

. (A.70)

We can exclude five-form flux f3 from the last equation by combining it with (A.64), then

using (A.45) we find the relation

− eB+CdG

e2B + e2C
+

αeA

2F
∗ d log

eG + e−G

eH
− aα

2
e−φ/2−2A ∗ df1 = 0 . (A.71)

To summarize, we have shown that the system of five differential equations (A.16)–(A.20)

can be rewritten as four projectors (A.44), (A.50), (A.53), and five differential relations

(A.45), (A.58), (A.65), (A.71) and these two descriptions are equivalent. For future refer-

ence, in the next subsection we collect all equations in one place.

A.4 Summarizing supergravity solution

In this long appendix we analyzed the SUSY variations of type IIB supergravity on a

manifold with AdS2 ×S2 ×S4 factors. Let us now collect the results. We showed that one

can always choose a coordinate system so the the metric and fluxes have a form

ds2 = e2AdH2
2 + e2BdΩ2

2 + e2CdΩ2
4 +

e−2φ

e2B + e2C
(dx2 + dy2) (A.72)

F5 = df3 ∧ dΩ4 + ∗10(df3 ∧ dΩ4), H3 = df1 ∧ dH2, F3 = df2 ∧ dΩ2 (A.73)

e2A = yeH−φ, e2B = yeG−φ, e2C = ye−G−φ, F =
√

e2A − e2B − e2C (A.74)

The geometry is supersymmetric if and only is these fields satisfy the following differential

relations

df1 = −4ae2A+φ/2

e2A − e2B

[

eAFdφ − αeB+C ∗ dφ
]

, (A.75)

df2 =
4aβe2B−φ/2

e2A − e2B

[

eBFdφ − αeA+C ∗ dφ
]

(A.76)

βeBe−4C ∗ df3 = eAd

(

A − φ

2

)

+
a

4
Fe−φ/2−2Adf1 (A.77)

d(H − G − 4φ) = − 2

y(e2B + e2C)
(e2Cdy + αFeB+C−Adx) (A.78)

α ∗ d arctan eG +
1

2
d log

eA − F

eA + F
− a

2
e−φ/2−2Adf1 = 0 . (A.79)
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In this coordinate system we expressed the Killing spinor ε in terms of a reduced spinor ε0

which effectively has one real component due to projections imposed on it:18

ε = e−δPΩPSeiσPSPH ε0, tan 2δ = e−G, tanh 2σ = e−A
√

e2B + e2C (A.80)

ε0 = −Γ11ε0 = iΓyPΩε0 = iαΓxPSε0 = aΓHε∗0 = iβΓSPSΓHPHε0 (A.81)

We also determined the spinor ε0 (up to overall normalization) by computing its bilinear:

ε†0ε0 =
√

e2A − e2B − e2C (A.82)

Each of the constants a, α, β can be equal to either plus or minus one, and so far we have

not fixed their signs. To avoid unnecessary complications, we will fix these projections in

the main body of the paper by taking a = α = β = 1. This choice does not make the situ-

ation less general, moreover a, α, β can be recovered easily by noticing that the differential

relations written in this subsection remain invariant it we flip signs of all elements in any

of the following sets:

(a, f1, f2), (α, x), (β, f2, f3) (A.83)

Here x is one of the coordinates which so far was defined as being orthogonal to y and thus

its sign was not fixed up to this point.

We conclude this summary by writing two useful relations. By combining (A.65) and

(A.64) we arrive at the following equation:

1

2
d[e2A − e2B ] − 1

2
(e2A + e2B)dφ +

a

2
FeAe−φ/2−2Adf1 + F 2dφ = 0 (A.84)

and (A.64), (A.45), (A.71) can be combined into

αeB+C ∗d

(

C − φ

2

)

− a

4
e2Be−φ/2−2Adf1−FeAd

(

A − φ

2

)

− a

4
F 2e−φ/2−2Adf1 = 0 . (A.85)

B. Constructing spinors on the sphere

While deriving the supersymmetry variations, we encountered spinors on unit spheres in

even dimensions and in this appendix we summarize a construction of such spinors. First

we recall that on even-dimensional sphere there are two types of Killing spinors, each class

satisfies one of the equations [32]:

∇mε
(1)
± = ± i

2
γmε

(1)
± , (B.1)

∇mε
(2)
± = ±1

2
γγmε

(2)
± (B.2)

Here γ is a hermitean chirality matrix. The situation is different for an odd dimensional

sphere which has only one class of Killing spinors (which will be denoted ε̂ in this appendix):

∇mε̂± = ± i

2
γmε̂± . (B.3)

18Nevertheless the solution is 1/2 BPS: see footnote 16.
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Once we have a spinor on an odd-dimensional sphere Sn, it can be easily embedded in

higher dimensions by using n + p spit of gamma matrices:

Γm = σ ⊗ γm, Γµ = σµ ⊗ 1, {σ, σµ} = 0, µ = 1, . . . , p . (B.4)

Unfortunately such simple decomposition does not work if n is even and the goal of this

appendix is to describe a construction of Killing spinors in that case. To do so we find

it useful to study embeddings Sn → Sn+1 and extract some general lessons from this

construction.

We begin with reviewing this construction for odd n. Writing the metric on Sn+1 as

dΩ2
n+1 = dθ2 + s2

θdΩ2
n, (B.5)

we find the derivatives along Ωn and θ directions:

∇iε =
i

2
γiε −

1

2
cθσθσγ̃iε =

i

2sθ
γi(σ − icθσθ)ε, ∇θε = ∂θε . (B.6)

To reproduce the equation on the sphere we need to impose a projection:

0 = (σ − icθσθ + λsθσσθ)ε = eiλσ θ
2 (σ − iσθ)e

−iλσ θ
2 ε . (B.7)

With this projection we reproduce the “chiral” relation on Sn+1:

∇iε = − iλ

2
γiΓΓθε, ∇θε =

iλ

2
Γε = − iλ

2
ΓθΓΓθε, ε = eiλΓ θ

2 ε0 . (B.8)

Notice that by starting from ε̂+ one can reproduce relations for both ε
(2)
+ and ε

(2)
− Alterna-

tively we could have started from ε̂− and produce both spinors on Sn+1. Such ambiguity

is related to the fact that dimension of the spinor grows as we move from even to odd

dimension. On the other hand, if we start from an even-dimensional sphere and add one

more dimension, then the size of the spinor does not change and one needs to use both ε
(2)
+

ε
(2)
− to construct a spinor in higher dimension. We will now describe the relevant procedure.

We begin with ”chiral” relation on even-dimensional sphere Sn and write the derivative

on Sn+1:

∇̃iεa =
a

2
γ̃iΓθεa : ∇iεa =

a

2sθ
γiΓθεa −

cθ

2sθ
Γθγiεa =

1

2sθ
γiΓθ(a + cθ)εa . (B.9)

Clearly this does not reduce to relation (B.3), but we can define a new spinor

ε̂+ ≡ ε+ + ε− (B.10)

then projection (B.2) for ε̂+ leads to the equation

(1 + cθ − isθΓθ)ε+ = −(−1 + cθ − isθΓθ)ε− : (1 + e−iθΓθ )ε+ = (1 − e−iθΓθ )ε− .

This equation and relation (B.3) along θ direction can be solved simultaneously by express-

ing ε+ and ε− in terms of θ-independent spinor ε0:

ε+ = i sin
θΓθ

2
ε0, ε− = cos

θΓθ

2
ε0, ε̂+ = exp

(

iθΓθ

2

)

ε0 ≡ ε− + Γθ ε̃+ . (B.11)
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This concludes the construction of a spinor on odd-dimensional sphere in terms of a ”chiral”

spinor on the even-dimensional one, but to learn a more general lesson about the spinors

it is convenient to rewrite the above relation is a slightly different form.

Let us go back to the equation for ε± and combine them into a single relation:

∇̃i(ε− + Γθε̃+) =
1

2
γ̃iΓθ(−ε− + Γθ ε̃+) . (B.12)

This equation can be rewritten in terms of spinor ε0 and two matrices Γ± = 1
2(1 ± Γθ):

∇̃i(e
iθ/2Γ+ + e−iθ/2Γ−)ε0 = −1

2
γ̃iΓθ(e

−iθ/2Γ+ + eiθ/2Γ−)ε0 =
1

2
γ̃i(−e−iθ/2Γ+ + eiθ/2Γ−)ε0 .

In other words, we have two relations

∇̃iΓ+ε0 =
1

2
γ̃iΓ−ε0, ∇̃iΓ−ε0 = −1

2
γ̃iΓ+ε0 . (B.13)

To summarize, we found that a spinor on an odd-dimensional sphere can be decomposed

as

ε̂+ =
1

2
(eiθ/2Γ+ε0 + e−iθ/2Γ−ε0) (B.14)

and spinor ε0 satisfies the equations (B.13). If we want to make the symmetries of Sn

explicit, it is convenient to choose a basis of gamma matrices which has a form (B.4).

Strictly speaking, this cannot be done for even n since the number of components of a

spinor does not change as we go from even to odd dimension, however we can first double

the size of the Killing spinor and then impose a projection. In the case of Sn → Sn+1 lift

we can choose a basis of gamma matrices

Γi = σ̂1 ⊗ Γ̃i, Γθ = σ̂3 ⊗ 1 (B.15)

and then require that Killing spinor satisfies a constraint which involves a chirality operator

γ:

σ̂3 ⊗ γ · ε = ε (B.16)

In particular, doubling the size of a spinor ε0 and imposing a constraint, one rewrites

equations (B.3) in terms of chirality matrix on Sn:

∇̃i(1 + γ)ε0 =
1

2
γ̃i(1 − γ)ε0, ∇̃i(1 − γ)ε0 = −1

2
γ̃i(1 + γ)ε0 . (B.17)

While we used the lift Sn → Sn+1 to motivate this relation, the result can be applied

to a general embedding of even dimensional spheres into higher dimensional spaces. One

first introduces a basis of gamma matrices:

Γm = σ ⊗ Γ̃m, Γµ = σµ ⊗ 1, {σ, σµ} = 0, µ = 1, . . . , p . (B.18)

The spinors are constrained by projection involving chirality operator γ on the sphere:

σ ⊗ γ · ε = ε . (B.19)
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Finally, the equations along the sphere directions are given by (B.17). To use these equa-

tions, it is convenient to rewrite them as

∇̃mε = − i

2
(σγ̃m)Pε (B.20)

and describe the properties of matrix P . First of all, since it contains a factor of σ, it

anticommutes with all Γµ. We will also need the commutation relation for P and γ, and

the simplest way to find it is to choose an explicit representation

γ =

(

1 0

0 −1

)

⊗ I (B.21)

where I is a unit matrix involving irrelevant components of the spinor. Then equations

(B.17) imply that in this representation matrix P has a form:

P = σ ⊗
(

0 −i

i 0

)

⊗ I. (B.22)

This shows that P is hermitean matrix which anticommutes with γ.

Let us now summarize the construction of Killing spinors on an even dimensional

sphere. One defines a basis of gamma matrices (B.18) and imposes a projection (B.19) on

a spinor. Then the Killing spinor satisfies an equation (B.20) with hermitean matrix P

which anticommutes with γµ and with chirality operator γ.

Finally, we make a brief comment about AdS space. All formulas for the spheres can be

rewritten for this case using a simple analytic continuation, in particular in equation (B.20)

a prefactor −i/2 should be replaced by 1/2.

C. Perturbative solution at large distances

In section 5 we outlined a procedure for constructing a solution as a perturbative series

around AdS5 ×S5. For all solutions which asymptote to AdS5 ×S5 (i.e. for all functions Φ

such that ∂yΦ = 0 in a finite region of y = 0 line) we expect this series to converge for large

values of x2 + y2, then the entire solution can be constructed as an analytic continuation

of the series. Some intermediate steps were missing in section 5 and here we will fill the

gaps.

Let us consider a first order corrections to the fields, i.e. we take m = 1 in equa-

tions (5.1). Then looking at definition of Ψ1, Ψ2, we find

dΨ
(1)
2 + ∗dΨ

(1)
1 = d(xφ(1)) − ∗d(yφ(1)) . (C.1)

Let us now expand the functions which enter equation (3.16):

arctan eG = arctan eG0 +
εg(1)

eG0 + e−G0
= arctan eG0 +

ε s sh g(1)

s2 + sh2

F =
√

c2 + ε[ch2 h(1) − sh2 g(1) + s2 g(1) − c2 φ(1)]
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= c

[

1 − 1

2
φ(1) +

ε

2c2
(h(1) + (h(1) − g(1))sh2 + g(1)s2)

]

≡ c(1 + εf (1))

eA = ch

[

1 − ε
φ(1)

2
+ ε

h(1)

2

]

eA − F

eA + F
=

ch − c

ch + c

[

1 + ε
2FeA

e2A − F 2
(a(1) − f (1))

]

[

log
eA − F

eA + F

](1)

=
2FeA

e2A − F 2
(a(1) − f (1)) =

x

sh2 + s2

[

h(1) − h(1) ch2

c2
+ g(1) sh

2 − s2

c2

]

.

Substituting this into the equations (3.16), we arrive at the expressions:

g(1)

s2 + sh2
− 2φ(1) =

∂yΦ
(1)

y
,

1

2(sh2 + s2)

[

h(1) − h(1)ch2

c2
+ g(1) sh

2 − s2

c2

]

+ 2φ(1) =
∂xΦ(1)

x
. (C.2)

It is useful to rewrite the last equation in a different form:

∂xΦ(1)

x
=

1

2(sh2 + s2)

[

(g(1) − h(1))
sh2 + s2

c2
− 2g(1) s

2

c2

]

+ 2φ(1)

= − 1

2c2
(h(1) − g(1) − 4φ(1)) +

1

2(sh2 + s2)

[

−2g(1) s
2

c2

]

− 2φ(1) s
2

c2

= − 1

2c2
(h(1) − g(1) − 4φ(1)) − s2

c2

∂yΦ
(1)

y
− 4s2

c2
φ(1) . (C.3)

At this point we can express everything in terms of Φ(1) and g(1):

2φ(1) =
g(1)

s2 + sh2
− ∂yΦ

(1)

y
, (C.4)

h(1) − g(1) − 4φ(1) = −
{

2s2 ∂yΦ
(1)

y
+ 8s2φ(1) + 2c2 ∂xΦ(1)

x

}

.

To determine g(1) in terms of Φ(1) we should use the equation

∂y(h
(1) − g(1) − 4φ(1)) =

4y

s2 + sh2

g(1)

s2 + sh2
(C.5)

which is a counterpart of (5.7) for m = 1. Evaluating the left-hand side of this relation:

∂y(h
(1) − g(1) − 4φ(1)) = −4∂y

(

s2g(1)

s2 + sh2

)

+ 2∂y

[

s2 ∂yΦ
(1)

y
− c2 ∂xΦ(1)

x

]

,

we arrive at equation (5.8) for m = 1. It is clear that the same set of equations which we

derived now for m = 1 would hold for any m, the only difference would be in the source

terms Φ(m) and Ψ
(m)
y .
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We were able to derive an equation for the perturbation in a closed form in part due

to a miraculous relation (C.1). We recall that in general to find the potentials Ψ1 and Ψ2

in terms of the metric and the dilaton one needs to solve differential equations, but in the

leading order the relation dx = ∗dy led to algebraic expression for the potentials. One can

hope that similar algebraic relation persists to higher orders as well. In the remaining part

of this appendix we will analyze this question for the second order in perturbation and

we conclude that there is no relation of the type (C.1). Another purpose to present these

calculations here is to provide expressions for the first order correction to the metric in a

form which is more explicit than (5.5), (5.8).

Let us look at the second correction to (3.13):

dΨ
(2)
2 + ∗dΨ

(2)
1 = d(xφ(2)) − ∗d(yφ(2))

+

(

eAF

e2A − e2B

)(1)

dφ(1) − y

(

e−φ

e2A − e2B

)(1)

∗ dφ(1) . (C.6)

We want to see whether the second line of this relation admits a simple decomposition

similar to the one in the first line. To answer this question we have to evaluate the second

line and try to guess an appropriate decomposition. While we can construct a complete

solution in the linear order starting from any harmonic function Φ, such solutions look

quite complicated due to presence of hyperbolic functions. One can first try to address the

question in the ”Poincare patch” of AdS space, i.e. in the region where hyperbolic functions

can be replaced by the exponents. In this region the solution simplifies dramatically and

we can write explicit expressions for all metric components. Notice that our perturbative

expansion should work only at large values of x2 +y2, i.e. precisely in the regime of validity

of the ”Poincare patch.” However to compute the second order we would want to keep

various modes of Φ (which go like Sne−nρ+inθ) at the same time, so one might think that

approximation of hyperbolic functions is not a good idea. However if we are interested in

contribution to the second line of (C.6) which is proportional to SnSm, it is true that the

leading contribution to this quantity is given by a Poincare patch result.

As we mentioned before, to construct the first perturbative correction to AdS5 × S5

solution, one should start with harmonic function Φ(1), then find the corresponding fields

φ(1), g(1), h(1) using equations (5.8), (5.5), then the fluxed can be recovered using (3.7)–

(3.9). Now we solve this system in the Poincare patch, i.e. we consider the region of large

ρ and replace hyperbolic functions by the exponents. Then it is convenient to start from a

multipole expansion of the harmonic function Φ(1):

Φ(1) = Q0ρ +
∑

n>0

Qn(z)e−nρ : (1 − z2)∂2
zQn − z∂zQn + n2Qn = 0, z ≡ cos θ . (C.7)

Since we want this function to be suppressed compared to the AdS5 × S5 contribution

(which naively goes like eρ), the index n should be non-negative. However nontrivial Q0

corresponds to changing the radius of the AdS space, so we will have to set it to zero. Also

Q1 corresponds to a dipole moment of the electrostatic problem, and since the total charge

of the system is non-zero (it is related with radius of AdS), we can always make a shift in

– 38 –



J
H
E
P
0
6
(
2
0
0
6
)
0
2
6

x coordinate to set Q1(z) = 0. Notice that there one can also add a constant to Φ(1), but

it will not affect the solution.

For large values of ρ, equation (5.8) becomes:

c

s
∂y

(

s3

c
2e−2ρg(1)

)

=
1

4
∂y

{

s2

y
∂yΦ

(1) − c2

x
∂xΦ(1)

}

≈ ∂y

{

e−2ρ(y∂y − x∂x)Φ(1)
}

. (C.8)

We observe that Q0 does not source the correction to the metric g(1). Let us now introduce

the mode expansion for the first order corrections:

g(1) =
∑

n>1

gn(z)e−nρ, h(1) =
∑

n>1

hn(z)e−nρ, φ(1) =
∑

n>1

Pn(z)e−(n+2)ρ . (C.9)

We introduced a shift into the modes of dilaton due to the relation (5.5) which implies that

in the Poincare patch there is a linear relation between Pn and Qn, gn once expansions

(C.9) are defined. For our purposes it would be convenient to express all fields in terms

of Pn rather than Qn but Pn can always be expressed in terms of Qn using (C.8). In

particular, (C.7) would imply a second order differential equation for Pn, but to get this

equation one needs a certain amount of a guesswork. Rather than taking this route, we

use a different method which directly leads to an equation for Pn, and we will use (C.8) to

relate Pn and Qn in the end.

In the approximation that we are taking, the equations for fluxes (3.7), (3.8) collapse

to simple relations:

df
(1)
1 = −e3ρ

[

c dφ(1) − s ∗ dφ(1)
]

, df
(1)
2 = e3ρ

[

c dφ(1) − s ∗ dφ(1)
]

(C.10)

which imply that f
(1)
1 = f

(1)
2 . Substituting expansion of φ(1) from (C.9), we find the

expression for f
(1)
1 :

df
(1)
1 = −

∑

n

e(1−n)ρ
{

[−(n + 2)cPn + s2P ′
n]dρ + [−scP ′

n − (n + 2)sPn]dθ
}

. (C.11)

Integrability condition for this relation leads to a differential equation for Pn:

(1 − z2)P ′′
n − 5zP ′

n − (4 − n2)Pn = 0 (C.12)

and now we want to express everything in terms of this function. We begin with rewriting

equation (5.8) in terms of φ(1) rather that g(1):

−8∂y(s
2φ(1)) − 8yφ(1)

s2 + sh2
=

4∂yΦ
(1)

s2 + sh2
+ 2∂y

[

s2 ∂yΦ
(1)

y
+ c2 ∂xΦ(1)

x

]

. (C.13)

Going to large values of ρ, we find an equation which holds on the Poincare patch:

−∂y(s
2φ(1)) − 2e−ρsφ(1) = 2e−2ρ∂yΦ

(1) + ∂y

[

e−2ρ(y∂yΦ
(1) + x∂xΦ(1))

]

.

Expanding this equations in terms of modes, we can solve for Qn as a function of Pn:

Qn =
1

(n − 1)n2
[z(1 − z2)P ′

n + ((2 + n2)(1 − z2) − 3)Pn] . (C.14)
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To arrive at this relation we used equation (C.12). As a consistency check one can see that

function Qn satisfies its equation (C.7) as long as Pn satisfies (C.12)19 One can also invert

a relation (C.14) to express Pn through Qn and Q′
n, but the result is quite complicated, so

we do not write it here. Finally we can use equations (C.4) to evaluate

gn = hn =
n + 1

2n(n − 1)

[

−2z(1 − z2)P ′
n − 2(n + 2)(1 − z2)Pn +

(n + 2)(n + 3)

n + 1
Pn

]

. (C.15)

Once we have a complete result for the solution in the first order, it can be used to

compute the second correction to Ψ1 and Ψ2, in particular we want to check whether the

simple algebraic relation similar to (C.1) persists at the second order. The computations

are straightforward but tedious, so we present only the essential steps. We begin with

looking at the following expression and expand up to second order:

e−φ

e2A − e2B

[

eA+φFdφ − y ∗ dφ
]

= d(xφ) − ∗d(yφ)

−
∑

n>1

e(1−n)ρs

4n
(2z(1 − z2)P ′

n − (n + 2)(2z2 + 1)Pn) ∗ dφ (C.16)

+
∑

n>1

e(1−n)ρ

2

[

(n + 2)zPn − (1 − z2)P ′
n

n − 1
− z(n + 2)(1 + 2z2)Pn − 2z2(1 − z2)P ′

n

2n

]

dφ .

We now observe that there exists a set of harmonic functions ζn:

ζn ≡ e(3−m)ρs
[

z(1 − z2)P ′
n − ((n + 1) + (2 − n)z2)Pn

]

(C.17)

and we also functions ζ̃n which are dual to ζn:

dζ̃n = ∗dζn : ∂ρζ̃n = (1 − n)ζ̃n = ∂θζn . (C.18)

Plugging this into the (C.16), we find

e−φ

e2A − e2B

[

eA+φFdφ − y ∗ dφ
]

= d(xφ) − ∗d(yφ)

+
∑

e(1−n)ρ

[

ζ̃n

2n
dφ − ζn

2n
∗ dφ +

(

z(3 − 4z2)

4
Pndφ − 1 − 4z2

4
Pn ∗ dφ

)

]

= d

(

xφ +
∑ e(1−n)ρζ̃n

2n
φ

)

− ∗d
(

yφ +
∑ e(1−n)ρζn

2n
φ

)

+
∑ e(1−n)ρ

4
Pn

[

−(1 − 4z2)s ∗ dφ + z(3 − 4z2)dφ
]

. (C.19)

Notice that due to the relations

∂θ(z(3 − 4z2)) = 3s(−1 + 4z2), ∂θ(s(1 − 4z2)) = 3z(3 − 4z2) (C.20)

19The computation mentioned here can be easily performed in Mathematica.
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we have the duality

d(z(3 − 4z2)e3ρ) = − ∗ d[(−1 + 4z2)e3ρ] (C.21)

this leads to equation

e−φ

e2A − e2B

[

eA+φFdφ − y ∗ dφ
]

= d

(

xφ +
∑ e(1−n)ρζ̃n

2n
φ +

xφ2

4
e2ρ(3 − 4z2)

)

− ∗ d

(

yφ +
∑ e(1−n)ρζn

2n
φ +

yφ2

4
e2ρ(1 − 4z2)

)

.

At this point we already have the expressions for Ψ
(2)
1 and Ψ

(2)
2 , but it turns out that using

explicit form of the ζ and ζ̃ they can be rewritten in a simpler form

Ψ1 = yφ

(

1

e2A − e2B
+

∑ e−nρ

4
(4z2 − 1)Pn

)

= yφ

(

1

e2A − e2B
+

e2ρ

4
(4z2 − 1)φ(1)

)

Ψ2 = φ

(

FeA

e2A − e2B
−

∑ xPn

4
e−nρ(3 − 4z2)

)

= φ

(

FeA

e2A − e2B
− xe2ρ

4
φ(1)(3 − 4z2)

)

. (C.22)

The brackets in the above equations contain two terms: the first term suggests a simple

algebraic relation analogous to (C.1), but the second terms destroy such simple connection.

If one could guess the general structure of such extra terms (and if such terms can be written

down in terms of algebraic functions or derivatives of warp factors) one would be able to

start from a harmonic function Φ and write a solution of the entire system. Unfortunately,

equation (C.22) seems to indicate that if such algebraic expressions for Ψ1 and Ψ2 exist,

they would be quite complicated, so at present time we have to rely on perturbation theory

to find the geometry.
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